
WordGesture-GAN: Modeling Word-Gesture Movement with
Generative Adversarial Network

Jeremy Chu Dongsheng An Yan Ma
Department of Computer Science, Department of Computer Science, Department of Computer Science,

Stony Brook University Stony Brook University Stony Brook University
New York, United States New York, United States New York, United States
jerchu@cs.stonybrook.edu doan@cs.stonybrook.edu yanma1@cs.stonybrook.edu

Wenzhe Cui Shumin Zhai Xianfeng Gu
Department of Computer Science, Google Department of Computer Science,

Stony Brook University California, United States Stony Brook University
New York, United States zhai@acm.org New York, United States
wecui@cs.stonybrook.edu gu@cs.stonybrook.edu

Xiaojun Bi
Department of Computer Science,

Stony Brook University
New York, United States

xiaojun@cs.stonybrook.edu

ABSTRACT
Word-gesture production models that can synthesize word-gestures
are critical to the training and evaluation of word-gesture keyboard
decoders. We propose WordGesture-GAN, a conditional generative
adversarial network that takes arbitrary text as input to generate
realistic word-gesture movements in both spatial (i.e., (�,�) coor-
dinates of touch points) and temporal (i.e., timestamps of touch
points) dimensions. WordGesture-GAN introduces a Variational
Auto-Encoder to extract and embed variations of user-drawn ges-
tures into a Gaussian distribution which can be sampled to control
variation in generated gestures. Our experiments on a dataset with
38k gesture samples show that WordGesture-GAN outperforms
existing gesture production models including the minimum jerk
model [37] and the style-transfer GAN [31, 32] in generating realis-
tic gestures. Overall, our research demonstrates that the proposed
GAN structure can learn variations in user-drawn gestures, and the
resulting WordGesture-GAN can generate word-gesture movement
and predict the distribution of gestures. WordGesture-GAN can
serve as a valuable tool for designing and evaluating gestural input
systems.

CCS CONCEPTS
• Human-centered computing; • Computing methodologies
→ Machine learning;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specifc permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’23, April 23–28, 2023, Hamburg, Germany
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9421-5/23/04. . . $15.00
https://doi.org/10.1145/3544548.3581279

KEYWORDS
Machine Learning; Touch/Haptic/Pointing/Gesture; Mobile Devices:
Phones/Tablets; Word-Gesture Input
ACM Reference Format:
Jeremy Chu, Dongsheng An, Yan Ma, Wenzhe Cui, Shumin Zhai, Xianfeng
Gu, and Xiaojun Bi. 2023. WordGesture-GAN: Modeling Word-Gesture
Movement with Generative Adversarial Network. In Proceedings of the
2023 CHI Conference on Human Factors in Computing Systems (CHI ’23),
April 23–28, 2023, Hamburg, Germany. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3544548.3581279

1 INTRODUCTION
A word-gesture [22, 49] is a continuous stroke defned on a vir-
tual keyboard connecting letters of a given word. Drawing word-
gestures over a virtual keyboard is an important alternative to
tap-typing for entering text on mobile devices (variously known as
Gesture Typing, Swipe Typing, Glide Typing and Shape Writing).
It has been widely adopted on major consumer products including
Google’s Gboard[28], Microsoft’s SwiftKey[43], and iOS’s built-in
keyboard.

This work aims at advancing the state of the art for generative
modelling of human word-gesture production. Models that can de-
scribe, predict, and simulate human’s interaction with computing
systems are foundational to developing interface technologies and
HCI as an academic feld. Situated in an era of symbolic systems as
the dominant form of AI, Card, Moran and Newell [7] developed a
set of HCI models from human information processing psychology
(such as Fitts’ law) and rule-based modeling (such as GOMS) that
helped to establish HCI as a distinct feld of research. The recent
rise and development in deep learning may drive another wave of
progress in HCI modeling. In this paper we use GAN (Generative
Adversarial Network), an increasingly popular and successful ap-
proach to deep learning, as a tool to model human gesture-typing
behavior.

https://doi.org/10.1145/3544548.3581279
https://doi.org/10.1145/3544548.3581279
mailto:permissions@acm.org

CHI ’23, April 23–28, 2023, Hamburg, Germany Jeremy Chu, Dongsheng An, Yan Ma, Wenzhe Cui, Shumin Zhai, Xianfeng Gu, and Xiaojun Bi

Models play three interrelated roles in HCI. First, as a summary
of empirical observations or as application of more general theories,
models may provide foundational understanding and insights as a
vital part of any scientifc feld. Second, models may generalize and
predict interaction behaviors beyond the scope of what lab tests
and feld studies reveal. Third, models can be used in the design
process of user interfaces.

Model building is particularly important for language input tech-
nologies such as word-gesture input due to the rich rules and varia-
tions in word sequences captured by language models that modern
text input systems rely on. Since the invention of this technol-
ogy [22, 47] , various gesture models have been developed and
applied to word-gesture system design and evaluation. For example,
modeling a gesture-stroke as a series of connected curves, lines,
and corners, and assuming the duration of drawing a word-gesture
is the sum of time cost for each aiming movement, Cao and Zhai [6]
and Rick [39] proposed various time performance models that can
predict the duration of drawing word-gestures. Coupled with op-
timizers, these models have been used to design and search for
keyboard layouts for high-efciency word-gesture input [5, 41].

Figure 1: Examples of user-drawn (orange) and simulated ges-
tures for the word "place" by our WordGesture-GAN (blue),
minimum jerk model (red) [37], and Style-Transfer GAN (pur-
ple) [31]. Dots represent equally spaced touchpoints in time
along the gesture. Segments with higher dot density indicate
slower movement. As shown, WordGesture-GAN generates
movements in both spatial and temporal dimensions, the
Minimum Jerk model generates movements in spatial and
relative temporal (i.e., assuming the duration of movement
of a unit length) dimensions. The original Style-Transfer
GAN [31, 32] generates gestures in the spatial dimension
only. We have extended it to both spatial and temporal di-
mensions (See Section 5.1).

In addition to performance models, production models that can
synthesize gesture movements are also critical for gestural input
technologies. They can augment the dataset used for the training
and evaluation of gesture recognizers (or decoders). For example,
Quinn and Zhai [37] proposed a minimum jerk model which models
word-gesture movement on the human-motor control principle of
minimization of jerk – the third derivative of position. This model
can predict the shape, trajectory, and relative movement dynamic

(assuming the duration of movement is of a unit length) of word-
gesture inputs.

Inspired by the style transfer research in image generation,
Mehra et al. [31, 32] proposed a style-transfer GAN that can syn-
thesize gestures by combining learned drawing styles with user
reference input. The gesture input dataset augmented by the syn-
thesized gestures signifcantly improved the accuracy of training
word-gesture decoders [32].

In this paper, we design and implement WordGesture-GAN,
a Generative Adversarial Network (GAN) [15] based production
model for word-gesture input. WordGesture-GAN introduces a
Variational Auto-Encoder to extract and embed the variations of
user-drawn gestures into a Gaussian distribution, which can be
easily sampled to introduce variations back to generated gestures.
More specifcally, WordGesture-GAN introduces variances into the
generated gestures by combining a sampled latent code with the
prototype shape for a target word as input to the generator. The
prototype shape of a word is a set of straight lines connecting the
centers of corresponding keys on a virtual keyboard, and the latent
code is sampled from a Gaussian distribution. We added the latent
code to the input by repeating it along the length of the prototype
shape.

WordGesture-GAN has the following advantages compared with
existing production models. Compared with the minimum jerk
model [37] which is limited to describe the shape and relative
movement dynamic of a gesture, WordGesture-GAN is able to
generate complete spatial and temporal information of a gesture,
described by a vector of (�� , �� , ��), where �� and �� are coordinates
of a touch point and �� is its timestamp (Figure 1). The data-driven
WordGesture-GAN can potentially capture users’ sub-optimal in-
put such as slips in motor control or mental preparation caused
pauses or hesitation in gestural movement, in addition to the opti-
mal trajectories predicted from the minimum jerk theory.

The WordGesture-GAN model also has improvements over the
previous GAN-based production model, referred as style-transfer
GAN [31, 32]. WordGesture-GAN predicts both spatial and tempo-
ral information of gesture movements (i.e., a vector of (�� , �� , ��),)
while the original style-transfer GAN predicts the spatial infor-
mation only (i.e., a vector of (�� , ��),). Additionally, WordGesture-
GAN adopted a Variational Auto-Encoder to encode the variation
of user-drawn gesture into a Gaussian distribution, making it easy
to sample. As a result, WordGesture-GAN does not requires user
reference gestures to sample input variation when generating ges-
tures for arbitrary words. It is an improvement over Style-Transfer
GAN which requires user-drawn reference gestures as input when
generating gestures.

Our experiment using a data set of 38k word-gesture inputs
shows the advantages of WordGesture-GAN over existing gesture
production models [31, 32, 37]. We re-implemented and trained a
minimum jerk model [37], and extended the original style-transfer
GAN with explicit style transfer [31, 32] to simulate movements in
both spatial and temporal dimensions, and compared both models
with the proposed WordGesture-GAN. The results showed that
the gestures generated by WordGesture-GAN more closely resem-
ble the user-drawn gestures, than the gestures generated by the
minimum jerk [37] and style-transfer GAN models [31, 32], mea-
sured by the �2 and dynamic time warping Wasserstein distances,

WordGesture-GAN: Modeling Word-Gesture Movement with Generative Adversarial Network CHI ’23, April 23–28, 2023, Hamburg, Germany

the Frecher Inception Distance (FID) scores, and the amount of
jerk in gestures. As WordGesture-GAN predicts the timestamps of
touch points along a trajectory, it can also predict the distribution
of duration of a gesture, serving as a performance model. Overall,
our research shows that the proposed conditional GAN structure
can learn variations in user-drawn gestures, and contributes a pro-
duction model (WordGesture-GAN) that can generate both spatial
and temporal sequences for word-gesture movement, resemble
user-drawn gestures, and predict the performance (duration) of
word-gesture input. It can serve as a valuable tool for developing
gestural input systems.

2 RELATED WORK

2.1 Word-Gesture Input
Since frst published in 2003 and 2004, word-gesture input [22, 49]
has been widely adopted as a text entry method by various key-
boards, including Google’s Gboard [28], Microsoft’s SwiftKey [43],
iOS’s built-in keyboard, and TouchPal [17]. This method allows a
user to enter text using fnger strokes that approximate the shape
of a word defned on a virtual keyboard, supports a gradual transi-
tion from visually guided tracing to re-called based input, and is
well-suited to touch-based or pen-based input. In the past decade,
word-gesture based input has been extended to support two-thumb
gestural input [4, 44], eyes-free input [52], and mid-air input [30].
Word-gesture input paradigm has also been extended beyond text
input. For example, previous research has leveraged word-gesture
for command input: a user enters a command by drawing a word-
gesture corresponding to the command name [1, 23, 51]. Given the
wide adoption of word-gesture based input technologies, models
that assist the development of word-gesture input technologies are
of great interest to the keyboard developers and users. There has
been a sizable amount of research in modeling word-gesture input,
as described next.

Word-gesture keyboard implementations typically use language
model predictions, using preceding words as priors to decode am-
biguous gesture inputs. User testing with test phrases can only test
on a small number of unique phrases. Model-based simulations that
cover broader text corpus are therefore necessary complements
to lab testing for evaluating the performance (in both speed and
precision) of word-gesture input systems.

2.2 Performance Models
Performance models predict the duration for drawing word-gestures.
One common approach of predicting duration is to model the ges-
ture movement as a concatenation of a series of aimed movements,
and assume the duration is the sum of time cost for these move-
ments. One performance model created using this assumption is
the Curves, Lines, and Corners (CLC) model [6], which assumes
that the duration is a sum of time costs for drawing straight lines,
curves, and corners in the word-gesture. It uses basic action laws
to predict the time cost for each of the three elements and adds
the time costs up to approximate the duration of drawing a word
gesture. Another performance model uses Fitts’ law to predict the
time cost of moving a fnger or pen between consecutive keys, and
adds the time costs up for drawing a word-gesture [39]. Both of
these models have shown initial success in predicting the duration

of drawing word-gestures, and have been adopted to design key-
board layouts for word-gesture input [39, 41]. The limitation is that
these models provide little information about the trajectories of
word-gestures.

2.3 Production Models
Production models simulate word-gesture input for a given word.
Such a model is especially valuable for developing gesture decoders
and keyboard layouts as it can generate a large number of word
gesture traces for training and testing [32].

The minimum jerk model [37] generates word-gesture move-
ments based on the minimum jerk theory [14]. The theory suggests
that the pathway taken by a person’s limbs on a planar surface
is guided by minimizing the jerk of the path between two target
points, where jerk is the third derivative of position. Using the
aforementioned theory, the minimum jerk model [37] generates
word-gestures by minimizing the jerk of trajectories between points.
The model extracts a set of points called via points that represent
key points along a gesture pathway, such as a corner points at letter
keys in a gesture, or midway points between said corner points.
Using these via points as start and end points of gesture move-
ments, trajectories between adjacent via points are constructed
by minimizing a jerk cost function and then are concatenated to
generate trajectories. By design, the minimum jerk model predicts
an optimal trajectory given a set of points in the sense that the
trajectory maximizes smoothness and minimizes efort while still
connecting all the via points. While such trajectories may indeed
be what a user draws in the latter "total recall" stage of learning of
the now familiar word-gestures, for early stages and less familiar
word-gestures the user-drawing process is likely to be a combina-
tion of recognition and recall, as envisioned in the original research
of word-gesture typing [22, 47, 48]. Real gestures are therefore a
combination of optimal paths and non-optimal traces. It is often
the case due to slips in motor control or thinking of where the next
letter for a word that real gestures will deviate of of the optimal
path. Since WordGesture-GAN is a data driven model, the model
can potentially learn various gesture characteristics from the data
itself. Additionally, in the temporal dimension, the minimum jerk
model predicts only the relative movement dynamics, assuming
that the duration of the movement is of a unit length. In contrast,
WordGesture-GAN can generate the timestamps of touchpoints
and predict the duration gesture movement.

Other works have applied deep learning to the task of gener-
ating gestures. Maghoumi et al. [29] applied a non adversarial
architecture to generating drawn, hand, and full body gestures by
formulating a dynamic time warping (DTW) inspired loss function
to remove the need for a discriminator network. Mehra et al. [32]
formulated word-gesture generation as a problem of style transfer
by adopting an LSTM architecture that takes a user reference path
and some synthetically generated reference path as a condition
in order to generate a new synthetic path. The network is then
trained using a GAN architecture. In a later paper by the same au-
thors [31], they compare the aforementioned implicit style transfer
architecture with a new explicit architecture [31], where reference
gesture is encoded to a latent vector space and the encoded style is

CHI ’23, April 23–28, 2023, Hamburg, Germany Jeremy Chu, Dongsheng An, Yan Ma, Wenzhe Cui, Shumin Zhai, Xianfeng Gu, and Xiaojun Bi

then used as input to the GAN. The explicit style transfer architec-
ture therefore has more fexibility than the implicit style transfer
architecture [31]. We explain how WordGesture-GAN difers and
makes improvements over Style-Transfer GAN in the next section
following a brief introduction of GAN. We also re-implemented
the Style-Transfer GAN with explicit style transfer [31] and ran an
experiment to compare it with WordGesture-GAN (Section 5).

2.4 Generative Adversarial Networks
Generative Adversarial Networks (GANs)[15] have become one of
the most popular generative machine learning models in recent
years. A GAN is a deep learning architecture where the objective is
to optimize a loss function for two networks locked in an adversarial
minimax game. The networks can be broadly categorized as the
generator and the critic (discriminator). The generator attempts to
fnd a function to generate outputs that are as closely representative
of the real data as possible. At the same time, the critic attempts to
diferentiate the generated outputs of the generator from the real
data. One key advantage of this architecture is the ability to use a
simple noise distribution, such as Gaussian noise as input to the
generator, making it simple to sample for new outputs by inputting
randomly generated noise into the generator.

Although GAN architectures are able to reconstruct a target
dataset with great variety and accuracy, a key downside is that a
user has no control over the output of the GAN. The Conditional
GAN [33] addresses this problem. It allows for a user to specify a
target category for the output of the GAN, giving some level of
control to the user of what the network will output.

In the past decade, GANs and Conditional GANs have been
widely adopted for problems in multiple domains. The primary
domain for GANs has been in computer vision, where they are used
to generate new images both with and without conditional inputs
[2, 18, 19, 35, 38, 46]. Recently more domains have started to de-
velop GAN architectures for synthesizing realistic examples. Audio
synthesis has taken advantage of GANs to synthesize audio with
better global structure and at a much faster rate [8, 13, 21]. While
Transformers have become the primary method of text synthesis,
there have been publications using GANs for text synthesis as well,
including using a GAN architecture to augment a Transformer
[9, 27].

Previous research [31, 32] which formulated gesture generation
as a style transfer problem has shown it is feasible to simulate
word-gesture movements with GANs. Our work further advances
using GANs to simulate word-gestures in the following two aspects.
First, the previous work [31, 32] modeled (�� , ��) (i.e., coordinate)
sequences of word-gesture movement only while WordGesture-
GAN models sequences of (�� , �� , ��) which includes the tempo-
ral information (timestamp ��). Therefore, WordGesture-GAN can
model the movement dynamic and gesture production duration,
which were omitted in the previous work [31, 32]. Second, the
previous work [31, 32] models the word-gesture generation as a
style transfer problem, which requires user-drawn gestures as input
to encode style information and user-drawn gestures (called user
reference input) are needed when generating gestures. This means
sampling gestures for words without any user drawn reference is
difcult. WordGesture-GAN moves away from the style-transfer

idea and controls the variance of synthesized gestures by sampling
from a Gaussian noise model created by a Variational Auto-Encoder.
As a result, WordGesture-GAN does not require user-drawn ges-
tures as input (once the generator is trained) to simulate arbitrary
word-gestures.

3 ARCHITECTURE OF WordGesture-GAN
We propose a conditional GAN model called WordGesture-GAN to
simulate word-gesture movements for a given word. Figure 2 depicts
the architecture of WordGesture-GAN which consists of a generator
and discriminator. Next, we explain the input, output, and structures
of generator and discriminator, and explain the loss functions used
in training both components.

3.1 Generator
3.1.1 Input and output. The function of the generator (Figure 3)
is to generate word-gestures for a given word with randomness in
the output. It takes the following two inputs for training.

• The target word � . The Generator frst converts a target
word� into the corresponding word prototype shape, which
is a set of straight lines connecting the centers of correspond-
ing keys on a virtual keyboard (e.g., green strokes in Figure
2). Each word corresponds to only one word prototype which
serves as the representation of the target word in the train-
ing process. We represented a word with its prototype shape
instead of its text format because the former provided basic
information about the location and shape of the correspond-
ing word gestures, which could simply the learning process.

To construct word prototypes from a target word � , we use
the letter centroids for the word � on a keyboard as the
initial set of touch points. Between every two key centers
we distribute � − � points so that each key center pair has
�−� "between" points, where � is sequence length and � is
�

the number of key centers. Positions of "between" points are
determined by uniformly distributing between respective
key centers. This process is depicted as the purple box in
Figures 2 and 3. We use � = 128 points in constructing the
word prototype.

• User-drawn gestures for the target word � . The variational
encoder component (Figure 2) takes user-drawn gestures for
the target word � as input (for training), encodes it into
a Gaussian latent code, and passes it to the generator. In
WordGesture-GAN, we represent user-drawn gestures as a
sequence of (�� , �� , ��) where �� and �� represent the � − �
coordinates of touch points and �� represents how much
time passed since the previous point. We set the number
of touch points as � = 128, using a fxed length vector to
represent each gesture. If a user-drawn gesture has more
than � touch points, we uniformly sample � points from the
gesture, ensuring the start and end points of the gesture are
included. If a user-drawn gesture has less than � touch points,
we linearly interpolate between the existing touch points
to generate a new sequence of length �. Figure 2 shows an
example of a user-drawn gesture for the word found.

WordGesture-GAN: Modeling Word-Gesture Movement with Generative Adversarial Network CHI ’23, April 23–28, 2023, Hamburg, Germany

Figure 2: A depiction of the WordGesture-GAN architecture. The word prototype (straight lines connecting letter centroids
on a keyboard) and a random Gaussian latent code are inputs to the generator. The output of the generator is then fed to the
discriminator and the discriminator outputs how realistic the gesture is. The variational encoder generates the Gaussian latent
code for training the generator only. User-drawn gestures (orange) are not involved when we use the generator to simulate
gestures.

Figure 3: A depiction of the Generator architecture (green box in Figure 2) along with the Variational Encoder architecture (blue
box in Figure 2). The word prototype (green) acts as the conditional input for the generator. During training, the variational
encoder encodes user-drawn gestures (orange) into the Gaussian latent space. The resulting latent code is repeated along the
length of the prototype shape and is concatenated before being fed into the Generator. To ensure the Generator uses the latent
code in a meaningful way, we recover the latent code from the simulated gesture using the variational encoder and compare it
against the original latent code

CHI ’23, April 23–28, 2023, Hamburg, Germany Jeremy Chu, Dongsheng An, Yan Ma, Wenzhe Cui, Shumin Zhai, Xianfeng Gu, and Xiaojun Bi

We normalized the coordinates of both user-draw gestures and
word prototypes. More specifcally, the � and � coordinates of both
user-drawn gestures and word prototypes are normalized to be
within [-1,1] where -1 is the left/top of the keyboard and 1 is the
right/bottom of the keyboard. The unit of timestamps are in seconds
to ensure the scale of timestamp values is similar to the scale of
coordinates. The output of the generator is a simulated gesture for
a word, which is then passed to the discriminator.

3.1.2 Structure. The generator is a multi-layer Bidirectional LSTM
that takes both the prototype shape and the latent code as input.
The LSTM is designed to model data in a sequential manner, which
makes it appropriate for generating word-gestures. To provide the
latent code to the generator it is frst repeated along the sequence
length and then concatenated with the prototype shape (as shown
in Figure 3). This method of concatenation follows the method
proposed in Bicycle GAN to input a latent code alongside a semantic
map[50].

We use a Variational Encoder to encode a user-drawn gesture
into a Gaussian latent code (Figure 3). The encoder is a multi-layer
perceptron with two fnal layers to get the mean and variance
representing aspects of the gesture. With these two parameters
encoded from the gesture, we can then use the reparamaterization
trick as described in the original Variational Auto-Encoder (VAE)
paper [20] to sample from a Gaussian distribution in a way that is
diferentiable for training. By training the network in this way, we
ensure that the Gaussian noise will have some meaningful structure
for generation.

3.2 Discriminator
3.2.1 Input and output. The discriminator takes either simulated
gestures from the generator or user-draw gestures as input and
outputs to what degree the input gesture is a user-drawn gesture.
Despite the generator being conditional, we avoid using a condi-
tional discriminator as in practice we found that the model performs
better when trained with an unconditional discriminator. This is
consistent with the fndings of previous works[36, 50].

The output of the discriminator � (�) for a gesture � describes
how much the discriminator believes the gesture � is user-drawn.
a smaller number (e.g. � (�) < 0) means the gesture is simulated,
while a larger number (e.g. � (�) > 0) means it is user-drawn.

The output of the discriminator on the user-drawn and simu-
lated gestures, along with an additional reconstruction loss for the
generator, are then used in back propagation to adjust the weights
of the full WordGesture-GAN, including both the generator and
discriminator following their respective loss functions.

3.2.2 Structure. The discriminator adopts a multi-layer perception
structure to output a single value representing how realistic the
output is. The discriminator takes only the user-drawn or simulated
gesture as input. A depiction of the discriminator for this model is
given in Figure 4.

3.3 Loss functions
3.3.1 Loss function for discriminator. We use the Wasserstein GAN
loss [3] as the loss function for the discriminator. The objective of
the discriminator is to minimize the loss function over all words in

the training dataset. The loss function for a word � under a partic-
ular generator (�) and a discriminator (�) is denoted by ����� (�),
and is defned as:

����� (�) = E�∼� (�) [� (� (�,�))] − E� ∼� (�) [� (�)] (1)

The term � is a sample from the latent space representing the
variation of user-drawn gestures (Figure 3), which has a Gauss-
ian distribution denoted by � (�). � (�,�) is a gesture simulated
by Generator � for the word � with the sampled variation �. The
term � (� (�,�)) is the output (a real number) from discriminator
� which describes how close the simulated gesture � (�,�) is to
a user-drawn gesture. E�∼� (�) [� (� (�,�))] is the expectation of
� (� (�,�)) over a distribution of � (�). The term � represents a user-
drawn gesture, which has a distribution of � (�). � (�) represents
the output of the discriminator which describes how close � is to a
user-drawn gesture.

Minimizing the loss function over all words maximizes the output
of discriminator for user-drawn gestures, while minimizing the
output of the discriminator for simulated gestures. The loss function
output acts as an estimate of the Wasserstein distance between the
user-drawn and simulated gestures, providing a strong gradient for
training.

3.3.2 Loss function for generator. The loss function of the generator
for a word � is denoted by ���� (�), and is defned as follows.

���� (�) = −����� (�) + �� ��� �� ��� (�) + ���� ���� (�)
(2)+���� ���� (�) + ���� ����

It is a weighted average over 5 components. The weights �� ��� ,
���� , ���� , and ���� are hyper-parameters. We present their actual
values in Section 4.2. The defnition of each of the fve components
is explained as follows.

• The term ����� (�) is the loss function of the discriminator
(Equation 1).

• The term �� ��� (�) is the feature matching loss for a given
word �, which measures the diference between the statistics

Figure 4: A depiction of the Discriminator architecture
(brown box in Figure 2). The input is either a user-drawn
gesture or a simulated gesture. The output is a single value
representing how realistic the gesture is, where a larger value
(e.g. D(x)>0) means it is user-drawn.

WordGesture-GAN: Modeling Word-Gesture Movement with Generative Adversarial Network CHI ’23, April 23–28, 2023, Hamburg, Germany

of user-drawn (�) and generated gestures (� (�,�)) for all
hidden layers of the discriminator. The method used is the
same as in the Pix2PixHD paper [45] and is defned as ∑

�� ��� (�) = E�∼� (�),� ∼� (�)

� 1 (| |� (�) (� (�,�)) − � (�) (�) | |1)
�� �=1

(3)
Where � is the total number of hidden layers in the discrim-
inator, � (�) is the i-th layer of the discriminator, �� is the
number of elements in layer � .

• The term ���� (�) represents the reconstruction loss for a
word �, which is the �1 loss between user-drawn gestures � ,
and simulated gestures from Generator � (�,�). It is defned
as

���� (�) = E�∼� (�),�∼� (�,�) |� − � | (4)
The �1 distance � − � is calculated between the �th point of
the gestures as:∑
|� − � | = |��� − ��� | + |��� − ��� | + |��� − ��� | (5)

� ∈�

where �� and �� is the �th point of the user-drawn gesture �
and a simulated gesture �, (�,�) are coordinates and � is the
timestamp.

• To enforce greater diversity in outputs and prevent mode
collapse, we include a latent encoding loss ���� like the one
found in Bicycle GAN [50]. We take a randomly sampled
encoding � from the Gaussian distribution � (�) and attempt
to recover it using �̃ = � (� (�,�)). we compare the original
latent code � and the recovered latent code �̃ using the �1
distance. This loss is defned as

���� (�) = E�∼� (�) [| |� (� (�,�)) − � | |1] (6)

While the reconstruction loss from Equation 5 enforces that
simulated gestures �̃ generated from latent codes are con-
sistent with user-drawn gestures � , the latent encoding loss
ensures that encodings resulting from simulated gestures �̃
are consistent with the initial encoding �.

• We also include ���� as a part of the loss function, which
is the Kullback-Liebler Divergence (KLD) [24] between the
variational encoder outputs and a normal distribution. This
term as mentioned briefy in section 3 ensures that the dis-
tribution of the variational encoder output does not diverge
too far from the Normal distribution and therefore become
difcult to sample from.

The objective of the generator is to minimize the loss function
(Equation 2) over all words in the training data set. Minimizing the
loss function would maximize the term E�∼� (�) [� (� (�,�))] which
indicates how likely a simulated gesture will be recognized as a user-
drawn gesture by the discriminator. Conversely, by minimizing the
loss function the �� ��� , ���� , ���� , and ���� losses end up being
minimized.

4 TRAINING WordGesture-GAN

4.1 Dataset
We used the publicly available mobile word-gesture dataset [26]
with 38k gestures for training and testing. The dataset was collected

via a web-based custom virtual keyboard, involving 1,338 users
who submitted word-gestures for 11,318 unique English words. The
original dataset consisted of around 124k gestures. We removed
gestures marked as invalid and gestures for single letter words.
The original dataset was heavily imbalanced, with certain words
like "the" getting signifcantly more representation in the dataset
than other words. To avoid bias for certain words introduced by
imbalanced training data, for any word with more samples than
some upper bound �, we sampled � gestures for that word randomly
from the dataset and discarded the rest. After setting the upper
bound as � = 5, we ended up with a dataset of around 38k gestures,
spread across approximately 11k words.

We split the dataset into a training and testing set each with a
unique set of words. To ensure no words overlap, we frst randomly
split the words into training and testing words following the split
ratio. We used a ratio of 80% training 20% testing to split our data,
resulting in 9045 unique training words and 2262 unique testing
words. We then sort the gestures into the relevant set based on
the word each gesture represents. The fnal training set size is 30k
unique word-gestures (only for training) while the fnal testing set
size is 7.6k unique word-gestures (exclusively held out for testing).

4.2 Training Process
We followed the procedure for training Wasserstein GAN [3] to
train WordGesture-GAN. We updated the discriminator 5 times
for every 1 update to the generator. This ensured that the discrim-
inator trained to optimality and provided a strong gradient for
the generator to follow. For the Gaussian latent code, we used a
32-dimensional vector as input to the network. For the weights of
the components of the generator loss, we use �� ��� = 1, ���� = 5,
���� = 0.5, and ���� = 0.05. We used a batch size of 512 and a
learning rate of 0.0002 on the ADAM optimizer. Leaky ReLU was
used between all layers of both the discriminator and the encoder,
while the Tanh activation found within the LSTM layer itself was
used as activation for all layers of the generator. Spectral normal-
ization [34] is used on all layers of the discriminator, due to the
K-Lipschitz constraint for the WGAN loss.

We also trained the network in two cycles similar to how it
is done in Bicycle GAN [50]. In one cycle, the model is given a

′randomly sampled latent code � to generate a new gesture � and
must recover the latent code (denoted as � ′) from the simulated

′ ′gesture � using the variational encoder (� → � → � ′). The
latent codes � and � ′ are then compared using the latent code loss
defned in Equation 6. In the second cycle a user-drawn gesture
� was encoded by the variational encoder to a latent code � ′ and

′was used as input to the generator to generate a new gesture �
(� → � → � ′). The user-drawn gesture � and the simulated

′ gesture � are then compared using an �1 reconstruction loss as
described in Equation 4. For each cycle a separate discriminator
is trained, both having the same structure. As with the original
Bicycle GAN paper [50] we found that this improved the outputs of

′the model. For the � → � → � ′ cycle we also freeze the encoder
when updating the latent code reconstruction loss to prevent the
encoder from hiding information from the generator.

CHI ’23, April 23–28, 2023, Hamburg, Germany Jeremy Chu, Dongsheng An, Yan Ma, Wenzhe Cui, Shumin Zhai, Xianfeng Gu, and Xiaojun Bi

5 EVALUATION
We used an ensemble of methods and measures to evaluate WG-
GAN generated word-gestures. Each method looked at a diferent
aspect of these gestures in comparison to those generated by the
prior state-of-the-art word-gesture models.

5.1 Re-implementing Minimum Jerk Model and
Style-Transfer GAN

As a baseline for comparison, we frst implemented the minimum
jerk model following Quinn and Zhai’s work [37]. We trained the
model as explained in [37] to fnd the aggregate distribution of the
ofsets from the key centers, and to fnd the mean and standard
deviation of the angles between the next key center and the mid-
point on the gesture curve about the previous character point. After
training on the same training dataset, we used the model to generate
the same number of simulated gestures as the testing dataset.

We also implemented the Style-Transfer GAN with explicit style
transfer [31, 32] as another baseline for comparison. We constructed
a sequence to sequence (Seq2Seq) model [42] as the generator for
the network. We replaced the original Minimax GAN loss with
the Wasserstein GAN loss for ease of training, given that this is
a smaller dataset than the original paper [31]. Since the original
paper did not specify how the style encodings were added in to the
Generator network, we chose to concatenate them together in the
encoding layer of the Seq2Seq model, as concatenation is a common
way to combined two inputs into one. The original Style-Transfer
GAN simulate only spatial movement for gestures (i.e., a sequence
of (�� , ��)). We extended it to generate both spatial and temporal
movements (i.e., a sequence of (�� , �� , ��)), to make it comparable to
the gestures generated by WordGesture-GAN. We achieved this by
representing a gesture with a vector of (�� , �� , ��), instead of (�� , ��),
in training. After training on the same training dataset, we sampled
gestures to get the same number of simulated gestures as the testing
dataset.

5.2 Simulating gestures with the generator in
WordGesture-GAN

After training WordGesture-GAN, we used the generator to simu-
late gestures, and evaluated them on the held-out testing dataset.
To simulate gestures for an arbitrary word � , we represented � as
a word prototype and fed it into the generator. The generator then
sampled a Gaussian latent code (Figure 3) to control the variation
of the simulated gestures. With these two inputs (prototype shape,
Gaussian latent code), the generator was able to simulate gestures
for � . We simulated gestures for every word within the testing
dataset. The number of simulated gestures for a word � was iden-
tical with the number of user-drawn gestures for � in the testing
dataset. Therefore, the simulated gesture dataset was exactly the
same size as the testing dataset. Recall that the words in the testing
dataset do not overlap with words used in training.

When generating gestures, the only input to the generators for
all the three models (the Minimum Jerk, Style-Transfer GAN, and
WordGesture-GAN) was the input text. None of them took user-
drawn gestures as references. Such a setup tested the capability
of a generator for generating realistic gestures for arbitrary text.

Taking the input text as the only input also made the comparison
fair across models.

5.3 Visual Inspection

Figure 5: Top: Examples of simulated gestures by
WordGesture-GAN for three diferent words. The dots
shown are evenly spaced in time, so areas where the dots
become denser are areas where the gesture speed slows
down. Bottom: Three simulated gestures from WordGesture-
GAN for the word "count". All these words were unseen in
the training dataset.

Figure 6: Examples of user-drawn and simulated gestures
from all three models for the word "voice". The dots shown
are evenly spaced in time, so areas where the dots become
denser are areas where the gesture speed slows down. All
three models took the text “voice” as the only input.

We frst visually inspected the simulated gestures from the three
models, to qualitatively evaluate whether they resembled user-
drawn gestures. Figures 5, 6, 7, and 8 show examples of simulated
gestures by diferent models in comparison with user-drawn ges-
tures. As shown in Figure 5, the simulated gestures by WordGesture-
GAN (blue curves) to a large degree matched our expectation of

WordGesture-GAN: Modeling Word-Gesture Movement with Generative Adversarial Network CHI ’23, April 23–28, 2023, Hamburg, Germany

Figure 7: Five simulated gestures (blue) by WordGesture-
GAN overlaying fve user-drawn gestures (orange) for the
same word.

Figure 8: Comparisons of WordGesture-GAN simulated ges-
tures dynamics (blue) to user-drawn gesture dynamics (or-
ange) and Minimum Jerk model simulated gestures (red) for
the same word.

how users would draw gestures. The generated gestures by the Min-
imum Jerk model [37] (red curves in Figure 5) showed smoothness
along the movements. It is expected as the gestures generated by
this model should minimize the changes in acceleration along the
path. The shapes of gestures generated by the Style-Transfer GAN
(purple curves in Figure 5) deviate from the user-drawn gestures.
It was probably because the style-transfer GAN was originally de-
signed to work with user reference input [31, 32], but in our test
user-drawn gestures (reference gestures) were absent in gesture
generation. One possible reason for the sub-optimal performance of
Style-Transfer GAN is that style-encoder in this model did not have
a well-defned shape to describe the latent space where the style
of drawing was embedded. It made the style sampling uncertain
thus resulting in unrealistic movements when the user reference
gestures were absent.

5.4 Wasserstein Distance between Simulated
and User-drawn Gestures

To understand to what degree the simulated gestures mimic the
user-drawn gestures, we examined the Wasserstein distance between
the simulated gestures and the user-drawn gestures using both �2
and dynamic time warping (DTW) distance as distance metrics.
We calculated the Wasserstein distance for each distance metric
within the words as follows. For a word � , we frst calculated
the �2 (or DTW) distance between each simulated gesture and
user-drawn gestures for the given word � . For measuring the �2
distance between gestures we maintain the temporal order of the
gesture, where the �-th point of the generated gesture is measured
against the �-th point of the user-drawn gesture. We then formulate
the problem of calculating the Wasserstein distance as a minimum
weight matching on a bipartite graph between simulated gestures
and user-drawn gestures, where the weights of the edges were the
�2 (or DTW) distances calculated beforehand (distances between
gestures for diferent words are set to infnity). After performing
the minimum weight matching, the mean of the weights of all
remaining edges is the average minimum �2 (DTW) distance, which
represents the smallest average cost needed to convert a simulated
gesture to a user-drawn gesture for a word. This is equivalent to
calculating the Wasserstein Distance, using �2 (DTW) distance as
the metric.

Tables 1 and 2 show the Wasserstein distance for the �2 and
DTW distance metrics between simulated and user-drawn gestures
for the WordGesture-GAN, Style Transfer GAN, and minimum
jerk models. Note that as the minimum jerk model does not sim-
ulate non-relative timestamps for touch points, we only have the
Wasserstein distance for (�� , ��) sequences for this model. As shown,
WordGesture-GAN yields a smaller Wasserstein distance than the
minimum jerk model and Style-Transfer GAN, indicating that the
gestures simulated by WordGesture-GAN are more similar to the
user-drawn gestures compared with the other two models. Figure
8 shows examples of simulated gestures of WordGesture-GAN and
the Minimum Jerk model compared with the user-drawn gestures.
As shown, WordGesture-GAN could simulate gestures similar to
the user drawn-gestures.

5.5 Frechet Inception Distance Score between
Simulated and User-drawn Gestures

We also measured the realism and diversity of generated gestures
using the Frechet inception distance score (FID) [16]. In image gen-
eration tasks, the FID score is a common metric for evaluating both
the realism and diversity of images and has been shown to correlate
well with human perception of realism [16]. To apply this metric
to our work, we trained an auto-encoder on the training dataset
we used for the other 3 models. The objective of the auto-encoder
was to encode a user-drawn gesture to a reduced dimension latent
code and use the resulting latent code to reconstruct the original
gesture. The auto encoder is a diferent structure from the GAN
model, consisting of a multi-layer perceptron encoder and a multi-
layer perceptron decoder, and being tasked with reconstructing the
original gesture that was given. After extracting latent codes for
both user-drawn gestures and simulated gesture using the encoder,
we measured the Frechet Distance [16] between the user-drawn

CHI ’23, April 23–28, 2023, Hamburg, Germany Jeremy Chu, Dongsheng An, Yan Ma, Wenzhe Cui, Shumin Zhai, Xianfeng Gu, and Xiaojun Bi

Method L2 Wasserstein Distance for (�� , ��)sequences L2 Wasserstein Distance for (�� , �� , ��)sequences
Minimum Jerk Model 5.004 (2.099) -
Style Transfer GAN 10.4805 (2.011) 10.4891 (2.011)
WordGesture-GAN 4.409 (2.193) 4.426 (2.198)

Table 1: Mean (std. dev) of �2 Word Wasserstein Distance between simulated gestures and user-drawn gestures on the testing
dataset. The minimum jerk model is evaluated for (�� , ��) sequences only as it does not predict the timestamps of touchpoints
on a non-relative timescale. As shown, WordGesture-GAN has better generation accuracy than the Minimum Jerk model and
Style Transfer GAN (lower is better).

Method DTW Wasserstein Distance for (�� , ��) sequences DTW Wasserstein Distance for (�� , �� , ��) sequences
Minimum Jerk Model 2.752 (1.488) -
Style Transfer GAN 8.11 (1.943) 8.132 (1.941)
WordGesture-GAN 2.146 (1.592) 2.183 (1.598)

Table 2: Mean (std. dev) of Dynamic time warping (DTW) Word Wasserstein Distance between simulated gestures and user-drawn
gestures on the testing dataset. The minimum jerk model is evaluated for (�� , ��) sequences only as it does not predict the
timestamps of touchpoints on a non-relative timescale.

and generated gesture latent code distributions using the mean
and variance from each. For simulated gestures that are similar to
user-drawn gestures, their encodings in the latent space should
be similar to the encodings of user-drawn gestures, resulting in
a small Frechet distance in the latent space. The fnal �1 recon-
struction loss in training was 0.041 and the fnal �1 reconstruction
loss on the testing set was 0.046. The FID Scores are presented
in Table 3. As shown, the distribution of gestures generated by
WordGesture-GAN have the lowest Frechet Distance, indicating
that they resembled the user-drawn gestures more closely than
gestures generated by the other two models.

Method Frechet Inception Distance Score
Minimum Jerk Model 0.354
Style Transfer GAN 2.733
WordGesture-GAN 0.270

Table 3: Frechet Inception Distance between generated and
user-drawn gestures by three models. Lower score is better.

5.6 Precision and Recall of Generated Gestures
over the User-Drawn Gestures

To further assess the realism and diversity of generated gestures,
we use precision and recall [25] to assess whether generated ges-
tures truthfully represent the user-drawn gestures (precision), and
whether the generated gestures cover variance in the user-drawn
gestures (recall). Specifcally, we followed a previously proposed
method to estimate the manifold for the user drawn and generated
gestures using � nearest neighbors[25]. For estimating the preci-
sion and recall for the user-drawn distribution � and the generated
distribution � , we describe the precision as the percentage of gen-
erated gestures in � that fall within the the user-drawn gesture
manifold, while recall represents the percentage of user-drawn
gestures that fall within the generated gesture manifold.

More specifcally, we calculated the precision and recall as fol-
lows. We frst estimated the respective gesture manifolds by taking
each gesture from the respective distribution (�� or � �) and drawing
a bounding circle �(�, �) around each gesture, where � is the center
point, represented as a gesture, and � is the radius of the bounding
circle. For estimating the manifold, � is equal to the distance to the
k-th nearest neighbor of center point � represented as � � �� (�).
We set � = 3 as suggested in the original paper[25]. The distance
between gesture pairs is calculated using the �2 distance the same
way as the �2 distances were calculated for the �2 Wasserstein
distance.

With the manifolds defned, we estimate the precision and recall
as follows: ∑|� |1

��������� = 1∃� s.t. � � ∈� (�� ,� � �� (��)) (7)|� |
� =0 ∑|� |1

������ = |� | 1∃� s.t. �� ∈� (� � ,� � �� (� �)) (8)
�=0

The precision and recall for all three models on the testing dataset
are presented in Table 4. The results show that WordGesture-GAN
has the highest precision value, indicating that WordGesture-GAN
outperformed other two models in generating realistic gestures.
On the other hand, The recall score of WordGesture-GAN is lower
than other models, indicating that it could be further improved
by increasing the variance of generated gestures. We discuss a
potential research direction to mitigate this issue in the Limitations
and Future Work section.

Method Precision Recall
Minimum Jerk Model 0.785 0.575
Style Transfer GAN 0.229 0.569
WordGesture-GAN 0.973 0.258

Table 4: Precision and recall of generated gestures over the
user-drawn gestures for all three models. Higher is better.

WordGesture-GAN: Modeling Word-Gesture Movement with Generative Adversarial Network CHI ’23, April 23–28, 2023, Hamburg, Germany

5.7 Correlations for Velocity and Acceleration
between Generated and User-drawn
Gestures

In addition to visual analysis, we also analyze the correlation for
the Velocity and Acceleration between generated and user-drawn
gestures, following the method used to evaluate the Minimum Jerk
Model [37]. We measured the Pearson Correlation between the user-
drawn and generated gestures to quantify the correlation between
the profles. Our analysis presented in Table 5 shows that although
the correlation for WordGesture-GAN is not the highest for either
velocity or acceleration, it is close to the highest value for both
measures. More specifcally, WordGesture-GAN is slightly behind
the Minimum Jerk Model, but better than the Style-Transfer Model
in velocity correlation; it is slightly behind Style-Transfer GAN
model, but better than the Minimum Jerk model in acceleration
correlation.

Figure 9: Comparisons of fve simulated gestures dynamics
by WordGesture-GAN (blue) to fve user-drawn gesture dy-
namics (orange) for the same word. Simulated gestures were
able to refect the trends of movement dynamics in user-
drawn gestures.

5.8 Distributions of Velocity and Acceleration
for Generated and User-Drawn Gestures

We also compare the distributions of velocity and acceleration for
generated and user drawn gestures against each other using box
plots. We calculate the velocities and accelerations across all ges-
tures by using frst and second derivative Savitzky-Golay flters [40]
and applying them to the gestures. Figure 10 shows the distributions
of velocity and acceleration for the user-drawn gestures and gen-
erated gestures from all 3 models. The distributions are visualized
using a box plot. The distributions of velocities and accelerations
for WordGesture-GAN more closely represent the distributions of
velocities and accelerations for the user-drawn gestures than the
other two models.

Figure 10: Box plots showing the velocity and acceleration
distributions normalized by the keyboard dimensions for the
user-drawn gestures and generated gestures for all 3 models.
The distributions for WordGesture-GAN are closer than both
the Minimum Jerk and Style-GAN models to the user-drawn
distributions.

5.9 Comparing Jerk in User-drawn and
Generated Gestures

We compared the average jerk of user-drawn and generated ges-
tures for each model as well. If the generated gestures resemble the
user-drawn gestures, they should have the similar amount of jerk.
We calculated the jerk by applying a third derivative Savtizky-Golay
flter [40] to the gestures, using a third degree polynomial and a
window size of 5 Table 6 shows the mean (std. dev) of jerk over
all generated and user-drawn gestures. As shown, the amount of
jerk in gestures generated by WordGesture-GAN is closest to the
amount of the jerk in the user-drawn gestures, indicating that the
gestures generated by WordGesture-GAN resemble the user-drawn
gestures more closely than other two models. It is also as expected
that the gestures generated by the minimum jerk model have the
lowest jerk as this model aims to the minimize the jerk of gesture
movements.

5.10 Duration of Gesture Production
As WordGesture-GAN can simulate the timestamps of each touch
point, it can predict the duration of drawing a gesture: the times-
tamp of the last touch point also indicates the duration of the draw-
ing a gesture. To understand whether this duration prediction is

CHI ’23, April 23–28, 2023, Hamburg, Germany Jeremy Chu, Dongsheng An, Yan Ma, Wenzhe Cui, Shumin Zhai, Xianfeng Gu, and Xiaojun Bi

Method Velocity Correlation Acceleration Correlation
Minimum Jerk Model 0.40 (0.24) 0.21 (0.14)
Style Transfer GAN 0.31 (0.18) 0.26 (0.21)
WordGesture-GAN 0.40 (0.21) 0.26 (0.17)

Table 5: Mean (std. dev) of Velocity and acceleration correlations between simulated and user drawn gestures for each model.

Method Jerk
User-Drawn 0.0066 (0.0103)
Minimum Jerk Model 0.0034 (0.0098)
Style Transfer GAN 0.0051 (0.0107)
WordGesture-GAN 0.0058 (0.0083)

Table 6: mean (std. dev) jerk for gestures from the presented
models and user-drawn gestures.

accurate, we compared WordGesture-GAN against the CLC model
[6] for predicting the duration of drawing gestures. The CLC model
approximates the gesture production duration by summing up the
cost for drawing line segments of a word prototype. More specif-
cally the time duration for drawing line segments is determined by
a function with parameters � and �

� (��) = � ∗ (| |�� | |2)� (9)

where �� is a line segment, | |�� | |2 is the length of the line segment,
and � and � are empirically determined constants. The equation
to get the duration of a gesture for a word is then the sum of the
duration of the line segments. the fnal equation for the duration of
a word is then ∑

� (�) = � (��) (10)
�� ∈�

We optimized the � and � values on the training set by fnding
the combination of � and � that minimizes the Root Mean Square
Error (RMSE) of the total duration. The values were � = 431.9 and
� = 0.125.

The evaluation on the testing dataset showed that the RMSE for
the CLC model was 1150.7 ms while WordGesture-GAN achieved an
RMSE of 1180.3 ms. For reference, the average duration of gestures
in the testing dataset was 1946.8 ms. Both WordGesture-GAN and
the CLC model have similar performance in predicting the mean of
duration. Our further analysis showed that WordGesture-GAN is
better at estimating the duration of longer gestures, while the CLC
model is better for short-length words, as is shown in Figure 11.
Diferent from the CLC model, since WordGesture-GAN generates
a distribution, it can estimate the variance of durations for gesture
movement time. It estimated that the mean of Std. Dev. of gesture
duration per word is 140 ms. For reference, the mean Std. Dev. of
duration of user-drawn gestures per word was 609 ms.

6 DISCUSSION AND FUTURE WORK

6.1 Performance of WordGesture-GAN
Our experiment results on the testing data set showed that the
gestures generated by WordGesture-GAN more closely resemble
the user drawn gestures than the Minimum Jerk model [37] and

Figure 11: Mean (Std. Dev) gesture duration for words
with diferent lengths for User-Drawn, and prediction by
WordGesture-GAN and the CLC model. The mean and stan-
dard deviation duration for each word are calculated and
then averaged within the respective word length bucket for
user-drawn and prediction by WordGesture-GAN . The CLC
model does not have error bars since it only estimates a single
mean value for each word and cannot predict the standard
deviation of gesture duration

Style-Transfer GAN [31, 32]. The �2 and DTW Wasserstein dis-
tances between the simulated and user-drawn gestures show that
WordGesture-GAN captures the shape of user-drawn gestures the
best, compared with the Minimum Jerk and Style-Transfer GAN.
Our analysis of the total amount of jerk, and FID score also shows
the gestures generated by WordGesture-GAN resemble the user-
drawn gestures more closely than other two models. We also pre-
sented visual examples of user-drawn gestures and simulated ges-
tures from all 3 models to show that WordGesture-GAN has the
closest resemblance visually to user-drawn gestures.

6.2 Applications of WordGesture-GAN
Generative gesture models like WordGesture-GAN can be used to
improve the development and evaluation of word-gesture based
input systems, and for keyboard layout optimization and evaluation.

First, as simulated gestures can accurately refect spatial and
temporal features of gesture movements, WordGesture-GAN can
be used for training and testing a word-gesture decoder. The devel-
opment of word-gesture based input systems often require a large
number of gestures for training and testing, which is laborious to
collect. WordGesture-GAN can be deployed to simulate a large
number of gestures for words with only small training samples,
and for words that were not included in data collection. Its ability

WordGesture-GAN: Modeling Word-Gesture Movement with Generative Adversarial Network CHI ’23, April 23–28, 2023, Hamburg, Germany

Training Setup Word error rate on testing data set
200 User-drawn gestures 32.8%
200 User-drawn + 10000 simulated gestures 28.6%
10000 Simulated gestures 28.6%
10000 User-drawn gestures 27.8%

Table 7: Word error rate of the SHARK2 decoder for diferent training setups

to simulate both spatial and temporal sequences (i.e., (�� , �� , ��) is
valuable especially if a decoder under evaluation takes into account
both spatial and temporal information (e.g., speed or acceleration)
for decoding.

As an example, we investigated using gestures simulated by
WordGesture-GAN to train a SHARK2 decoder [22]. The SHARK2

decoder is a multi-channel recognition system that integrates dis-
tance scores from a location channel, a shape channel, and prob-
ability scores from a language component. The SHARK2 decoder
algorithm assumes that the distance from a gesture to the standard
template of the intended word (in either the shape or the location
channel) follows a Gaussian distribution N(0, �). First introduced
in 2004 [22], SHARK2 outlines the principle of decoding gesture
input that has been widely adopted by various gesture input sys-
tems (e.g., [10, 11, 23, 52]). It was also the algorithm adopted by
the authors of the mobile word-gesture dataset [26] to analyze the
gesture input accuracy. We decided on the SHARK2 decoder due
to it being a well-known and accessible open-source algorithm.
Our results shown here using the decoder can therefore be used
for comparison against other works. For the shape channel, this
distribution is N(0, ��ℎ���), and for the location channel, this dis-
tribution is N(0, ����). Therefore, there are three main empirically
determined parameters in the SHARK2 decoder: ���� , ��ℎ��� , and
��� which is the weight for the language model as described in
previous research [22]. We implemented a SHARK2 decoder fol-
lowing the description in the original paper [22], and trained the
above three parameters using the setups described in Table 7 and
tested the decoding results on 30000 unseen user-drawn gestures.
We obtained user-drawn gestures from the mobile word-gesture
dataset [26] for training and testing the SHARK2 decoder. More
specifcally, we reserved 30000 gestures for testing and randomly
sampled 200 user-drawn gestures from the rest for training. We
used the same 30k unigram language model trained from the COCA
Corpus [12] across all conditions.

Our evaluation (Table 7) shows that augmenting user-drawn
gestures with gestures simulated by WordGesture-GAN can beneft
training word-gesture decoders. Furthermore, simulated gestures
alone can achieve similar performance in training a word-gesture
decoder compared to training with real-world gestures (decoding
word error rate 28.6% versus 27.8%).

Second, since WordGesture-GAN can also predict the gesture
production time for a word, it can serve as a performance model
in interface design, optimization, and evaluation. For example, per-
formance models such CLC model [6] and Rick’s model [39] have
been used to design, optimize, and evaluate keyboard layouts for
word-gesture input. The WordGesture-GAN could play the same
role as these models. A potential weakness of WordGesture-GAN is
that neural network based model typically takes longer time than

an analytic model (e.g., CLC model [6]) for making prediction. More
research is needed to understand whether it would be appropriate
for keyboard layout optimization research.

Third, as a data-driven model, WordGesture-GAN can be trained
to learn any type of word-gesture data. A key beneft of neural
network based generative model is the ability to fne-tune them
for specifc tasks. As we have shown, our model is able to simulate
a variety of word-gestures from a small training dataset, which is
ideal for simulating difcult to sample data. For example, the model
could be shown a dataset containing gestures where the user made
a mistake and could learn to recreate those types of gestures for
diferent words.

6.3 Limitations and Future Work
One area in which the current model can be improved further is
the diversity of the generated gestures. While the model is capable
of generate diferent gestures for a given word, the variance of
these is somewhat limited compared to other gesture production
models as is noted in Section 5.6. A potential method for improving
the variance could be to use gestures generated by the Minimum
jerk model as input instead of the straight-line prototype. Since
the Minimum Jerk gestures already have some variance for a given
word, this could improve the variance of gestures from the model
while still maintaining higher fdelity.

7 CONCLUSION
We have designed and implemented WordGesture-GAN, a con-
ditional generative adversarial network that takes arbitrary text
as input, and generates realistic word-gesture movements in both
spatial and temporal dimensions (i.e., a vector of (�� , �� , ��)). The in-
novations of WordGesture-GAN include introducing a Variational
Auto-Encoder to extract the variation of user-drawn gestures, us-
ing the Wasserstein distance and �1 distance to ensure simulated
gestures resembled user-drawn gestures, and adopting a two-cycle
process to train the model. Our experiment on a 38k dataset shows
that WordGesture-GAN outperforms the existing gesture produc-
tion models [31, 32, 37] in generating realistic gestures, measured
by the �2 and dynamic time warping Wasserstein distances, the
Frecher Inception Distance (FID) scores, and the amount of jerk
in gestures. WordGesture-GAN can also predict the duration of
drawing word-gestures, serving as a performance model. Our eval-
uation shows it overall performs similarly to the existing CLC
model [6] in predicting the duration of word-gesture movements.
As WordGesture-GAN can generate realistic word-gestures and
predict input performance, it serves as a valuable tool to develop
and evaluate gestural input systems.

CHI ’23, April 23–28, 2023, Hamburg, Germany Jeremy Chu, Dongsheng An, Yan Ma, Wenzhe Cui, Shumin Zhai, Xianfeng Gu, and Xiaojun Bi

REFERENCES
[1] Jessalyn Alvina, Carla F. Griggio, Xiaojun Bi, and Wendy E. Mackay. 2017. Com-

mandBoard: Creating a General-Purpose Command Gesture Input Space for Soft
Keyboard. In Proceedings of the 30th Annual ACM Symposium on User Interface
Software and Technology (Québec City, QC, Canada) (UIST ’17). Association for
Computing Machinery, New York, NY, USA, 17–28. https://doi.org/10.1145/
3126594.3126639

[2] Dongsheng An, Yang Guo, Min Zhang, Xin Qi, Na Lei, and Xianfang Gu. 2020.
AE-OT-GAN: Training GANs from Data Specifc Latent Distribution. In Computer
Vision – ECCV 2020, Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael
Frahm (Eds.). Springer International Publishing, Cham, 548–564.

[3] Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein Gener-
ative Adversarial Networks. In Proceedings of the 34th International Conference
on Machine Learning - Volume 70 (ICML’17). JMLR.org, Sydney, NSW, Australia,
214–223.

[4] Xiaojun Bi, Ciprian Chelba, Tom Ouyang, Kurt Partridge, and Shumin Zhai. 2012.
Bimanual Gesture Keyboard. Association for Computing Machinery, New York,
NY, USA, 137–146. https://doi.org/10.1145/2380116.2380136

[5] Xiaojun Bi and Shumin Zhai. 2016. IJQwerty: What Diference Does One Key
Change Make? Gesture Typing Keyboard Optimization Bounded by One Key
Position Change from Qwerty. In Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems (San Jose, California, USA) (CHI ’16). Association
for Computing Machinery, New York, NY, USA, 49–58. https://doi.org/10.1145/
2858036.2858421

[6] Xiang Cao and Shumin Zhai. 2007. Modeling Human Performance of Pen Stroke
Gestures. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (San Jose, California, USA) (CHI ’07). Association for Computing Machin-
ery, New York, NY, USA, 1495–1504. https://doi.org/10.1145/1240624.1240850

[7] SK Card, TP Moran, and A Newell. 1983. The psychology of human-computer
interaction. L. Erlbaum Associates Inc., USA.

[8] Zhehuai Chen, Andrew Rosenberg, Yu Zhang, Gary Wang, Bhuvana Ramabhad-
ran, and Pedro J. Moreno. 2020. Improving Speech Recognition Using GAN-Based
Speech Synthesis and Contrastive Unspoken Text Selection. In Proc. Interspeech
2020. International Speech Communication Association, Shanghai, China, 556–
560. https://doi.org/10.21437/Interspeech.2020-1475

[9] Danilo Croce, Giuseppe Castellucci, and Roberto Basili. 2020. GAN-BERT: Gen-
erative Adversarial Learning for Robust Text Classifcation with a Bunch of
Labeled Examples. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics. Association for Computational Linguistics, Online,
2114–2119. https://doi.org/10.18653/v1/2020.acl-main.191

[10] Wenzhe Cui, Jingjie Zheng, Blaine Lewis, Daniel Vogel, and Xiaojun Bi. 2019.
Hotstrokes: Word-gesture shortcuts on a trackpad. In Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems. 1–13.

[11] Wenzhe Cui, Suwen Zhu, Zhi Li, Zheer Xu, Xing-Dong Yang, IV Ramakrishnan,
and Xiaojun Bi. 2021. BackSwipe: Back-of-device Word-Gesture Interaction on
Smartphones. In Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems. 1–12.

[12] Mark Davies. 2008. The corpus of contemporary American English (COCA): 560
million words, 1990-present.

[13] Jesse H. Engel, Kumar Krishna Agrawal, Shuo Chen, Ishaan Gulrajani, Chris
Donahue, and Adam Roberts. 2019. GANSynth: Adversarial Neural Audio Syn-
thesis. In 7th International Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019 (New Orleans, LA, USA). OpenReview.net,
-, –. https://openreview.net/forum?id=H1xQVn09FX

[14] T Flash and N Hogan. 1985. The coordination of arm movements: an
experimentally confrmed mathematical model. Journal of Neuroscience 5,
7 (1985), 1688–1703. https://doi.org/10.1523/JNEUROSCI.05-07-01688.1985
arXiv:https://www.jneurosci.org/content/5/7/1688.full.pdf

[15] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative Adversarial
Nets. In Advances in Neural Information Processing Systems, Z. Ghahramani,
M. Welling, C. Cortes, N. Lawrence, and K. Q. Weinberger (Eds.), Vol. 27. Curran
Associates, Inc., Montréal, Canada. https://proceedings.neurips.cc/paper/2014/
fle/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

[16] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler,
and Sepp Hochreiter. 2017. GANs Trained by a Two Time-Scale Update
Rule Converge to a Local Nash Equilibrium. In Advances in Neural Informa-
tion Processing Systems, I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett (Eds.), Vol. 30. Curran Associates,
Inc., Red Hook, NY, USA. https://proceedings.neurips.cc/paper/2017/fle/
8a1d694707eb0fefe65871369074926d-Paper.pdf

[17] CooTek (Cayman) Inc. 2007. TouchPal. https://www.touchpal.com/.
[18] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. 2017. Image-to-

Image Translation with Conditional Adversarial Networks. In 2017 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR). IEEE Computer Society,
USA, 5967–5976. https://doi.org/10.1109/CVPR.2017.632

[19] Tero Karras, Samuli Laine, and Timo Aila. 2021. A Style-Based Generator Archi-
tecture for Generative Adversarial Networks. IEEE Trans. Pattern Anal. Mach.
Intell. 43, 12 (dec 2021), 4217–4228. https://doi.org/10.1109/TPAMI.2020.2970919

[20] Diederik P Kingma and Max Welling. 2014. Auto-Encoding Variational Bayes.
arXiv:1312.6114 [stat.ML]

[21] Jungil Kong, Jaehyeon Kim, and Jaekyoung Bae. 2020. Hif-gan: Generative
adversarial networks for efcient and high fdelity speech synthesis. Advances in
Neural Information Processing Systems 33 (2020), 17022–17033.

[22] Per-Ola Kristensson and Shumin Zhai. 2004. SHARK2: A Large Vocabulary
Shorthand Writing System for Pen-Based Computers. In Proceedings of the 17th
Annual ACM Symposium on User Interface Software and Technology (Santa Fe,
NM, USA) (UIST ’04). Association for Computing Machinery, New York, NY, USA,
43–52. https://doi.org/10.1145/1029632.1029640

[23] Per Ola Kristensson and Shumin Zhai. 2007. Command Strokes with and without
Preview: Using Pen Gestures on Keyboard for Command Selection. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (San Jose,
California, USA) (CHI ’07). Association for Computing Machinery, New York, NY,
USA, 1137–1146. https://doi.org/10.1145/1240624.1240797

[24] Solomon Kullback and Richard A Leibler. 1951. On information and sufciency.
The annals of mathematical statistics 22, 1 (1951), 79–86.

[25] Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo
Aila. 2019. Improved Precision and Recall Metric for Assessing Generative
Models. In Proceedings of the 33rd International Conference on Neural Information
Processing Systems. Curran Associates Inc., Red Hook, NY, USA, Article 353,
10 pages.

[26] Luis A. Leiva, Sunjun Kim, Wenzhe Cui, Xiaojun Bi, and Antti Oulasvirta.
2021. How We Swipe: A Large-Scale Shape-Writing Dataset and Empirical
Findings. In Proceedings of the 23rd International Conference on Mobile Human-
Computer Interaction (Toulouse & Virtual, France) (MobileHCI ’21). Associa-
tion for Computing Machinery, New York, NY, USA, Article 11, 13 pages.
https://doi.org/10.1145/3447526.3472059

[27] Changliang Li, Yixin Su, and Wenju Liu. 2018. Text-To-Text Generative Adversar-
ial Networks. In 2018 International Joint Conference on Neural Networks (IJCNN).
IEEE Computer Society, USA, 1–7. https://doi.org/10.1109/IJCNN.2018.8489624

[28] Google LLC. 2016. Gboard. https://play.google.com/store/apps/details?id=com.
google.android.inputmethod.latin.

[29] Mehran Maghoumi, Eugene Matthew Taranta, and Joseph LaViola. 2021. Deep-
NAG: Deep Non-Adversarial Gesture Generation. In 26th International Con-
ference on Intelligent User Interfaces (College Station, TX, USA) (IUI ’21). As-
sociation for Computing Machinery, New York, NY, USA, 213–223. https:
//doi.org/10.1145/3397481.3450675

[30] Anders Markussen, Mikkel Rønne Jakobsen, and Kasper Hornbæk. 2014. Vulture:
A Mid-Air Word-Gesture Keyboard. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (Toronto, Ontario, Canada) (CHI ’14).
Association for Computing Machinery, New York, NY, USA, 1073–1082. https:
//doi.org/10.1145/2556288.2556964

[31] Akash Mehra, Jerome R. Bellegarda, Ojas Bapat, Hema Koppula, Rick Chang,
Ashish Shrivastava, and Oncel Tuzel. 2021. Implicit vs. Explicit Style Transfer? A
Comparison of GAN Architectures for Continuous Path Keyboard Input Modeling.
In 2021 29th European Signal Processing Conference (EUSIPCO). IEEE Computer
Society, USA, 1396–1400. https://doi.org/10.23919/EUSIPCO54536.2021.9615962

[32] Akash Mehra, Jerome R. Bellegarda, Ojas Bapat, Partha Lal, and Xin Wang.
2020. Leveraging Gans to Improve Continuous Path Keyboard Input Models.
In ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE Computer Society, USA, 8174–8178. https:
//doi.org/10.1109/ICASSP40776.2020.9052978

[33] Mehdi Mirza and Simon Osindero. 2014. Conditional Generative Adversarial
Nets. arXiv:1411.1784 [cs.LG]

[34] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida.
2018. Spectral Normalization for Generative Adversarial Networks.
arXiv:1802.05957 [cs.LG]

[35] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. 2019. Gau-
GAN: Semantic Image Synthesis with Spatially Adaptive Normalization. In ACM
SIGGRAPH 2019 Real-Time Live! (Los Angeles, California) (SIGGRAPH ’19). As-
sociation for Computing Machinery, New York, NY, USA, Article 2, 1 pages.
https://doi.org/10.1145/3306305.3332370

[36] Deepak Pathak, Philipp Krähenbühl, Jef Donahue, Trevor Darrell, and Alexei A.
Efros. 2016. Context Encoders: Feature Learning by Inpainting. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). IEEE Computer
Society, USA, 2536–2544. https://doi.org/10.1109/CVPR.2016.278

[37] Philip Quinn and Shumin Zhai. 2018. Modeling Gesture-Typing Movements.
Human–Computer Interaction 33, 3 (2018), 234–280. https://doi.org/10.1080/
07370024.2016.1215922 arXiv:https://doi.org/10.1080/07370024.2016.1215922

[38] Alec Radford, Luke Metz, and Soumith Chintala. 2015. Unsupervised Repre-
sentation Learning with Deep Convolutional Generative Adversarial Networks.
https://doi.org/10.48550/ARXIV.1511.06434

https://doi.org/10.1145/3126594.3126639
https://doi.org/10.1145/3126594.3126639
https://doi.org/10.1145/2380116.2380136
https://doi.org/10.1145/2858036.2858421
https://doi.org/10.1145/2858036.2858421
https://doi.org/10.1145/1240624.1240850
https://doi.org/10.21437/Interspeech.2020-1475
https://doi.org/10.18653/v1/2020.acl-main.191
https://openreview.net/forum?id=H1xQVn09FX
https://doi.org/10.1523/JNEUROSCI.05-07-01688.1985
https://arxiv.org/abs/https://www.jneurosci.org/content/5/7/1688.full.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf
https://doi.org/10.1109/CVPR.2017.632
https://doi.org/10.1109/TPAMI.2020.2970919
https://arxiv.org/abs/1312.6114
https://doi.org/10.1145/1029632.1029640
https://doi.org/10.1145/1240624.1240797
https://doi.org/10.1145/3447526.3472059
https://doi.org/10.1109/IJCNN.2018.8489624
https://play.google.com/store/apps/details?id=com.google.android.inputmethod.latin
https://play.google.com/store/apps/details?id=com.google.android.inputmethod.latin
https://doi.org/10.1145/3397481.3450675
https://doi.org/10.1145/3397481.3450675
https://doi.org/10.1145/2556288.2556964
https://doi.org/10.1145/2556288.2556964
https://doi.org/10.23919/EUSIPCO54536.2021.9615962
https://doi.org/10.1109/ICASSP40776.2020.9052978
https://doi.org/10.1109/ICASSP40776.2020.9052978
https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1802.05957
https://doi.org/10.1145/3306305.3332370
https://doi.org/10.1109/CVPR.2016.278
https://doi.org/10.1080/07370024.2016.1215922
https://doi.org/10.1080/07370024.2016.1215922
https://arxiv.org/abs/https://doi.org/10.1080/07370024.2016.1215922
https://doi.org/10.48550/ARXIV.1511.06434
https://OpenReview.net
https://JMLR.org

WordGesture-GAN: Modeling Word-Gesture Movement with Generative Adversarial Network CHI ’23, April 23–28, 2023, Hamburg, Germany

[39] Jochen Rick. 2010. Performance Optimizations of Virtual Keyboards for Stroke-
Based Text Entry on a Touch-Based Tabletop. In Proceedings of the 23nd Annual
ACM Symposium on User Interface Software and Technology (New York, New York,
USA) (UIST ’10). Association for Computing Machinery, New York, NY, USA,
77–86. https://doi.org/10.1145/1866029.1866043

[40] Abraham. Savitzky and M. J. E. Golay. 1964. Smoothing and Difer-
entiation of Data by Simplifed Least Squares Procedures. Analytical
Chemistry 36, 8 (1964), 1627–1639. https://doi.org/10.1021/ac60214a047
arXiv:https://doi.org/10.1021/ac60214a047

[41] Brian A. Smith, Xiaojun Bi, and Shumin Zhai. 2015. Optimizing Touchscreen
Keyboards for Gesture Typing. In Proceedings of the 33rd Annual ACM Conference
on Human Factors in Computing Systems (Seoul, Republic of Korea) (CHI ’15).
Association for Computing Machinery, New York, NY, USA, 3365–3374. https:
//doi.org/10.1145/2702123.2702357

[42] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to Sequence
Learning with Neural Networks. In Proceedings of the 27th International Conference
on Neural Information Processing Systems - Volume 2 (Montreal, Canada) (NIPS’14).
MIT Press, Cambridge, MA, USA, 3104–3112.

[43] SwiftKey. 2016. Microsoft Swiftkey. https://www.microsoft.com/en-us/swiftkey.
[44] Khai N. Truong, Sen H. Hirano, Gillian R. Hayes, and Karyn Mofatt. 2013. 2-

Thumb Gesture: The Design & Evaluation of a Non-Sequential Bi-manual Gesture
Based Text Input Technique for Touch Tablets. Technical Report. Knowledge Media
Design Institute.

[45] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan
Catanzaro. 2018. High-Resolution Image Synthesis and Semantic Manipulation
with Conditional GANs. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. IEEE Computer Society, USA, 8798–8807.

[46] Xintao Wang, Liangbin Xie, Chao Dong, and Ying Shan. 2021. Real-ESRGAN:
Training Real-World Blind Super-Resolution with Pure Synthetic Data. In 2021

IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). IEEE
Computer Society, USA, 1905–1914. https://doi.org/10.1109/ICCVW54120.2021.
00217

[47] Shumin Zhai and Per-Ola Kristensson. 2003. Shorthand Writing on Stylus Key-
board. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (Ft. Lauderdale, Florida, USA) (CHI ’03). Association for Computing
Machinery, New York, NY, USA, 97–104. https://doi.org/10.1145/642611.642630

[48] Shumin Zhai and Per Ola Kristensson. 2007. CHAPTER 7 - Introduction to Shape
Writing. In Text Entry Systems, I. Scott MacKenzie and Kumiko Tanaka-Ishii
(Eds.). Morgan Kaufmann, Burlington, 139–158. https://doi.org/10.1016/B978-
012373591-1/50007-3

[49] Shumin Zhai and Per Ola Kristensson. 2012. The Word-Gesture Keyboard:
Reimagining Keyboard Interaction. Commun. ACM 55, 9 (sep 2012), 91–101.
https://doi.org/10.1145/2330667.2330689

[50] Jun-Yan Zhu, Richard Zhang, Deepak Pathak, Trevor Darrell, Alexei A Efros,
Oliver Wang, and Eli Shechtman. 2017. Toward Multimodal Image-to-Image
Translation. In Advances in Neural Information Processing Systems, I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett
(Eds.), Vol. 30. Curran Associates, Inc., Red Hook, NY, USA. https://proceedings.
neurips.cc/paper/2017/fle/819f46e52c25763a55cc642422644317-Paper.pdf

[51] Suwen Zhu, Yoonsang Kim, Jingjie Zheng, Jennifer Yi Luo, Ryan Qin, Liuping
Wang, Xiangmin Fan, Feng Tian, and Xiaojun Bi. 2020. Using Bayes’ Theorem for
Command Input: Principle, Models, and Applications. Association for Computing
Machinery, New York, NY, USA, 1–15. https://doi.org/10.1145/3313831.3376771

[52] Suwen Zhu, Jingjie Zheng, Shumin Zhai, and Xiaojun Bi. 2019. I’sFree: Eyes-
Free Gesture Typing via a Touch-Enabled Remote Control. In Proceedings of the
2019 CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland
Uk) (CHI ’19). Association for Computing Machinery, New York, NY, USA, 1–12.
https://doi.org/10.1145/3290605.3300678

https://doi.org/10.1145/1866029.1866043
https://doi.org/10.1021/ac60214a047
https://arxiv.org/abs/https://doi.org/10.1021/ac60214a047
https://doi.org/10.1145/2702123.2702357
https://doi.org/10.1145/2702123.2702357
https://doi.org/10.1109/ICCVW54120.2021.00217
https://doi.org/10.1109/ICCVW54120.2021.00217
https://doi.org/10.1145/642611.642630
https://doi.org/10.1016/B978-012373591-1/50007-3
https://doi.org/10.1016/B978-012373591-1/50007-3
https://doi.org/10.1145/2330667.2330689
https://proceedings.neurips.cc/paper/2017/file/819f46e52c25763a55cc642422644317-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/819f46e52c25763a55cc642422644317-Paper.pdf
https://doi.org/10.1145/3313831.3376771
https://doi.org/10.1145/3290605.3300678
https://www.microsoft.com/en-us/swiftkey

	Abstract
	1 Introduction
	2 Related Work
	2.1 Word-Gesture Input
	2.2 Performance Models
	2.3 Production Models
	2.4 Generative Adversarial Networks

	3 Architecture of WordGesture-GAN
	3.1 Generator
	3.2 Discriminator
	3.3 Loss functions

	4 Training WordGesture-GAN
	4.1 Dataset
	4.2 Training Process

	5 Evaluation
	5.1 Re-implementing Minimum Jerk Model and Style-Transfer GAN
	5.2 Simulating gestures with the generator in WordGesture-GAN
	5.3 Visual Inspection
	5.4 Wasserstein Distance between Simulated and User-drawn Gestures
	5.5 Frechet Inception Distance Score between Simulated and User-drawn Gestures
	5.6 Precision and Recall of Generated Gestures over the User-Drawn Gestures
	5.7 Correlations for Velocity and Acceleration between Generated and User-drawn Gestures
	5.8 Distributions of Velocity and Acceleration for Generated and User-Drawn Gestures
	5.9 Comparing Jerk in User-drawn and Generated Gestures
	5.10 Duration of Gesture Production

	6 Discussion and Future Work
	6.1 Performance of WordGesture-GAN
	6.2 Applications of WordGesture-GAN
	6.3 Limitations and Future Work

	7 Conclusion
	References

