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ABSTRACT 
Word-gesture production models that can synthesize word-gestures 
are critical to the training and evaluation of word-gesture keyboard 
decoders. We propose WordGesture-GAN, a conditional generative 
adversarial network that takes arbitrary text as input to generate 
realistic word-gesture movements in both spatial (i.e., (�,�) coor-
dinates of touch points) and temporal (i.e., timestamps of touch 
points) dimensions. WordGesture-GAN introduces a Variational 
Auto-Encoder to extract and embed variations of user-drawn ges-
tures into a Gaussian distribution which can be sampled to control 
variation in generated gestures. Our experiments on a dataset with 
38k gesture samples show that WordGesture-GAN outperforms 
existing gesture production models including the minimum jerk 
model [37] and the style-transfer GAN [31, 32] in generating realis-
tic gestures. Overall, our research demonstrates that the proposed 
GAN structure can learn variations in user-drawn gestures, and the 
resulting WordGesture-GAN can generate word-gesture movement 
and predict the distribution of gestures. WordGesture-GAN can 
serve as a valuable tool for designing and evaluating gestural input 
systems. 

CCS CONCEPTS 
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→ Machine learning; 
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1 INTRODUCTION 
A word-gesture [22, 49] is a continuous stroke defned on a vir-
tual keyboard connecting letters of a given word. Drawing word-
gestures over a virtual keyboard is an important alternative to 
tap-typing for entering text on mobile devices (variously known as 
Gesture Typing, Swipe Typing, Glide Typing and Shape Writing). 
It has been widely adopted on major consumer products including 
Google’s Gboard[28], Microsoft’s SwiftKey[43], and iOS’s built-in 
keyboard. 

This work aims at advancing the state of the art for generative 
modelling of human word-gesture production. Models that can de-
scribe, predict, and simulate human’s interaction with computing 
systems are foundational to developing interface technologies and 
HCI as an academic feld. Situated in an era of symbolic systems as 
the dominant form of AI, Card, Moran and Newell [7] developed a 
set of HCI models from human information processing psychology 
(such as Fitts’ law) and rule-based modeling (such as GOMS) that 
helped to establish HCI as a distinct feld of research. The recent 
rise and development in deep learning may drive another wave of 
progress in HCI modeling. In this paper we use GAN (Generative 
Adversarial Network), an increasingly popular and successful ap-
proach to deep learning, as a tool to model human gesture-typing 
behavior. 

https://doi.org/10.1145/3544548.3581279
https://doi.org/10.1145/3544548.3581279
mailto:permissions@acm.org
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Models play three interrelated roles in HCI. First, as a summary 
of empirical observations or as application of more general theories, 
models may provide foundational understanding and insights as a 
vital part of any scientifc feld. Second, models may generalize and 
predict interaction behaviors beyond the scope of what lab tests 
and feld studies reveal. Third, models can be used in the design 
process of user interfaces. 

Model building is particularly important for language input tech-
nologies such as word-gesture input due to the rich rules and varia-
tions in word sequences captured by language models that modern 
text input systems rely on. Since the invention of this technol-
ogy [22, 47] , various gesture models have been developed and 
applied to word-gesture system design and evaluation. For example, 
modeling a gesture-stroke as a series of connected curves, lines, 
and corners, and assuming the duration of drawing a word-gesture 
is the sum of time cost for each aiming movement, Cao and Zhai [6] 
and Rick [39] proposed various time performance models that can 
predict the duration of drawing word-gestures. Coupled with op-
timizers, these models have been used to design and search for 
keyboard layouts for high-efciency word-gesture input [5, 41]. 

Figure 1: Examples of user-drawn (orange) and simulated ges-
tures for the word "place" by our WordGesture-GAN (blue), 
minimum jerk model (red) [37], and Style-Transfer GAN (pur-
ple) [31]. Dots represent equally spaced touchpoints in time 
along the gesture. Segments with higher dot density indicate 
slower movement. As shown, WordGesture-GAN generates 
movements in both spatial and temporal dimensions, the 
Minimum Jerk model generates movements in spatial and 
relative temporal (i.e., assuming the duration of movement 
of a unit length) dimensions. The original Style-Transfer 
GAN [31, 32] generates gestures in the spatial dimension 
only. We have extended it to both spatial and temporal di-
mensions (See Section 5.1). 

In addition to performance models, production models that can 
synthesize gesture movements are also critical for gestural input 
technologies. They can augment the dataset used for the training 
and evaluation of gesture recognizers (or decoders). For example, 
Quinn and Zhai [37] proposed a minimum jerk model which models 
word-gesture movement on the human-motor control principle of 
minimization of jerk – the third derivative of position. This model 
can predict the shape, trajectory, and relative movement dynamic 

(assuming the duration of movement is of a unit length) of word-
gesture inputs. 

Inspired by the style transfer research in image generation, 
Mehra et al. [31, 32] proposed a style-transfer GAN that can syn-
thesize gestures by combining learned drawing styles with user 
reference input. The gesture input dataset augmented by the syn-
thesized gestures signifcantly improved the accuracy of training 
word-gesture decoders [32]. 

In this paper, we design and implement WordGesture-GAN, 
a Generative Adversarial Network (GAN) [15] based production 
model for word-gesture input. WordGesture-GAN introduces a 
Variational Auto-Encoder to extract and embed the variations of 
user-drawn gestures into a Gaussian distribution, which can be 
easily sampled to introduce variations back to generated gestures. 
More specifcally, WordGesture-GAN introduces variances into the 
generated gestures by combining a sampled latent code with the 
prototype shape for a target word as input to the generator. The 
prototype shape of a word is a set of straight lines connecting the 
centers of corresponding keys on a virtual keyboard, and the latent 
code is sampled from a Gaussian distribution. We added the latent 
code to the input by repeating it along the length of the prototype 
shape. 

WordGesture-GAN has the following advantages compared with 
existing production models. Compared with the minimum jerk 
model [37] which is limited to describe the shape and relative 
movement dynamic of a gesture, WordGesture-GAN is able to 
generate complete spatial and temporal information of a gesture, 
described by a vector of (�� , �� , �� ), where �� and �� are coordinates 
of a touch point and �� is its timestamp (Figure 1). The data-driven 
WordGesture-GAN can potentially capture users’ sub-optimal in-
put such as slips in motor control or mental preparation caused 
pauses or hesitation in gestural movement, in addition to the opti-
mal trajectories predicted from the minimum jerk theory. 

The WordGesture-GAN model also has improvements over the 
previous GAN-based production model, referred as style-transfer 
GAN [31, 32]. WordGesture-GAN predicts both spatial and tempo-
ral information of gesture movements (i.e., a vector of (�� , �� , �� ),) 
while the original style-transfer GAN predicts the spatial infor-
mation only (i.e., a vector of (�� , �� ),). Additionally, WordGesture-
GAN adopted a Variational Auto-Encoder to encode the variation 
of user-drawn gesture into a Gaussian distribution, making it easy 
to sample. As a result, WordGesture-GAN does not requires user 
reference gestures to sample input variation when generating ges-
tures for arbitrary words. It is an improvement over Style-Transfer 
GAN which requires user-drawn reference gestures as input when 
generating gestures. 

Our experiment using a data set of 38k word-gesture inputs 
shows the advantages of WordGesture-GAN over existing gesture 
production models [31, 32, 37]. We re-implemented and trained a 
minimum jerk model [37], and extended the original style-transfer 
GAN with explicit style transfer [31, 32] to simulate movements in 
both spatial and temporal dimensions, and compared both models 
with the proposed WordGesture-GAN. The results showed that 
the gestures generated by WordGesture-GAN more closely resem-
ble the user-drawn gestures, than the gestures generated by the 
minimum jerk [37] and style-transfer GAN models [31, 32], mea-
sured by the �2 and dynamic time warping Wasserstein distances, 
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the Frecher Inception Distance (FID) scores, and the amount of 
jerk in gestures. As WordGesture-GAN predicts the timestamps of 
touch points along a trajectory, it can also predict the distribution 
of duration of a gesture, serving as a performance model. Overall, 
our research shows that the proposed conditional GAN structure 
can learn variations in user-drawn gestures, and contributes a pro-
duction model (WordGesture-GAN) that can generate both spatial 
and temporal sequences for word-gesture movement, resemble 
user-drawn gestures, and predict the performance (duration) of 
word-gesture input. It can serve as a valuable tool for developing 
gestural input systems. 

2 RELATED WORK 

2.1 Word-Gesture Input 
Since frst published in 2003 and 2004, word-gesture input [22, 49] 
has been widely adopted as a text entry method by various key-
boards, including Google’s Gboard [28], Microsoft’s SwiftKey [43], 
iOS’s built-in keyboard, and TouchPal [17]. This method allows a 
user to enter text using fnger strokes that approximate the shape 
of a word defned on a virtual keyboard, supports a gradual transi-
tion from visually guided tracing to re-called based input, and is 
well-suited to touch-based or pen-based input. In the past decade, 
word-gesture based input has been extended to support two-thumb 
gestural input [4, 44], eyes-free input [52], and mid-air input [30]. 
Word-gesture input paradigm has also been extended beyond text 
input. For example, previous research has leveraged word-gesture 
for command input: a user enters a command by drawing a word-
gesture corresponding to the command name [1, 23, 51]. Given the 
wide adoption of word-gesture based input technologies, models 
that assist the development of word-gesture input technologies are 
of great interest to the keyboard developers and users. There has 
been a sizable amount of research in modeling word-gesture input, 
as described next. 

Word-gesture keyboard implementations typically use language 
model predictions, using preceding words as priors to decode am-
biguous gesture inputs. User testing with test phrases can only test 
on a small number of unique phrases. Model-based simulations that 
cover broader text corpus are therefore necessary complements 
to lab testing for evaluating the performance (in both speed and 
precision) of word-gesture input systems. 

2.2 Performance Models 
Performance models predict the duration for drawing word-gestures. 
One common approach of predicting duration is to model the ges-
ture movement as a concatenation of a series of aimed movements, 
and assume the duration is the sum of time cost for these move-
ments. One performance model created using this assumption is 
the Curves, Lines, and Corners (CLC) model [6], which assumes 
that the duration is a sum of time costs for drawing straight lines, 
curves, and corners in the word-gesture. It uses basic action laws 
to predict the time cost for each of the three elements and adds 
the time costs up to approximate the duration of drawing a word 
gesture. Another performance model uses Fitts’ law to predict the 
time cost of moving a fnger or pen between consecutive keys, and 
adds the time costs up for drawing a word-gesture [39]. Both of 
these models have shown initial success in predicting the duration 

of drawing word-gestures, and have been adopted to design key-
board layouts for word-gesture input [39, 41]. The limitation is that 
these models provide little information about the trajectories of 
word-gestures. 

2.3 Production Models 
Production models simulate word-gesture input for a given word. 
Such a model is especially valuable for developing gesture decoders 
and keyboard layouts as it can generate a large number of word 
gesture traces for training and testing [32]. 

The minimum jerk model [37] generates word-gesture move-
ments based on the minimum jerk theory [14]. The theory suggests 
that the pathway taken by a person’s limbs on a planar surface 
is guided by minimizing the jerk of the path between two target 
points, where jerk is the third derivative of position. Using the 
aforementioned theory, the minimum jerk model [37] generates 
word-gestures by minimizing the jerk of trajectories between points. 
The model extracts a set of points called via points that represent 
key points along a gesture pathway, such as a corner points at letter 
keys in a gesture, or midway points between said corner points. 
Using these via points as start and end points of gesture move-
ments, trajectories between adjacent via points are constructed 
by minimizing a jerk cost function and then are concatenated to 
generate trajectories. By design, the minimum jerk model predicts 
an optimal trajectory given a set of points in the sense that the 
trajectory maximizes smoothness and minimizes efort while still 
connecting all the via points. While such trajectories may indeed 
be what a user draws in the latter "total recall" stage of learning of 
the now familiar word-gestures, for early stages and less familiar 
word-gestures the user-drawing process is likely to be a combina-
tion of recognition and recall, as envisioned in the original research 
of word-gesture typing [22, 47, 48]. Real gestures are therefore a 
combination of optimal paths and non-optimal traces. It is often 
the case due to slips in motor control or thinking of where the next 
letter for a word that real gestures will deviate of of the optimal 
path. Since WordGesture-GAN is a data driven model, the model 
can potentially learn various gesture characteristics from the data 
itself. Additionally, in the temporal dimension, the minimum jerk 
model predicts only the relative movement dynamics, assuming 
that the duration of the movement is of a unit length. In contrast, 
WordGesture-GAN can generate the timestamps of touchpoints 
and predict the duration gesture movement. 

Other works have applied deep learning to the task of gener-
ating gestures. Maghoumi et al. [29] applied a non adversarial 
architecture to generating drawn, hand, and full body gestures by 
formulating a dynamic time warping (DTW) inspired loss function 
to remove the need for a discriminator network. Mehra et al. [32] 
formulated word-gesture generation as a problem of style transfer 
by adopting an LSTM architecture that takes a user reference path 
and some synthetically generated reference path as a condition 
in order to generate a new synthetic path. The network is then 
trained using a GAN architecture. In a later paper by the same au-
thors [31], they compare the aforementioned implicit style transfer 
architecture with a new explicit architecture [31], where reference 
gesture is encoded to a latent vector space and the encoded style is 
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then used as input to the GAN. The explicit style transfer architec-
ture therefore has more fexibility than the implicit style transfer 
architecture [31]. We explain how WordGesture-GAN difers and 
makes improvements over Style-Transfer GAN in the next section 
following a brief introduction of GAN. We also re-implemented 
the Style-Transfer GAN with explicit style transfer [31] and ran an 
experiment to compare it with WordGesture-GAN (Section 5). 

2.4 Generative Adversarial Networks 
Generative Adversarial Networks (GANs)[15] have become one of 
the most popular generative machine learning models in recent 
years. A GAN is a deep learning architecture where the objective is 
to optimize a loss function for two networks locked in an adversarial 
minimax game. The networks can be broadly categorized as the 
generator and the critic (discriminator). The generator attempts to 
fnd a function to generate outputs that are as closely representative 
of the real data as possible. At the same time, the critic attempts to 
diferentiate the generated outputs of the generator from the real 
data. One key advantage of this architecture is the ability to use a 
simple noise distribution, such as Gaussian noise as input to the 
generator, making it simple to sample for new outputs by inputting 
randomly generated noise into the generator. 

Although GAN architectures are able to reconstruct a target 
dataset with great variety and accuracy, a key downside is that a 
user has no control over the output of the GAN. The Conditional 
GAN [33] addresses this problem. It allows for a user to specify a 
target category for the output of the GAN, giving some level of 
control to the user of what the network will output. 

In the past decade, GANs and Conditional GANs have been 
widely adopted for problems in multiple domains. The primary 
domain for GANs has been in computer vision, where they are used 
to generate new images both with and without conditional inputs 
[2, 18, 19, 35, 38, 46]. Recently more domains have started to de-
velop GAN architectures for synthesizing realistic examples. Audio 
synthesis has taken advantage of GANs to synthesize audio with 
better global structure and at a much faster rate [8, 13, 21]. While 
Transformers have become the primary method of text synthesis, 
there have been publications using GANs for text synthesis as well, 
including using a GAN architecture to augment a Transformer 
[9, 27]. 

Previous research [31, 32] which formulated gesture generation 
as a style transfer problem has shown it is feasible to simulate 
word-gesture movements with GANs. Our work further advances 
using GANs to simulate word-gestures in the following two aspects. 
First, the previous work [31, 32] modeled (�� , �� ) (i.e., coordinate) 
sequences of word-gesture movement only while WordGesture-
GAN models sequences of (�� , �� , �� ) which includes the tempo-
ral information (timestamp �� ). Therefore, WordGesture-GAN can 
model the movement dynamic and gesture production duration, 
which were omitted in the previous work [31, 32]. Second, the 
previous work [31, 32] models the word-gesture generation as a 
style transfer problem, which requires user-drawn gestures as input 
to encode style information and user-drawn gestures (called user 
reference input) are needed when generating gestures. This means 
sampling gestures for words without any user drawn reference is 
difcult. WordGesture-GAN moves away from the style-transfer 

idea and controls the variance of synthesized gestures by sampling 
from a Gaussian noise model created by a Variational Auto-Encoder. 
As a result, WordGesture-GAN does not require user-drawn ges-
tures as input (once the generator is trained) to simulate arbitrary 
word-gestures. 

3 ARCHITECTURE OF WordGesture-GAN 
We propose a conditional GAN model called WordGesture-GAN to 
simulate word-gesture movements for a given word. Figure 2 depicts 
the architecture of WordGesture-GAN which consists of a generator 
and discriminator. Next, we explain the input, output, and structures 
of generator and discriminator, and explain the loss functions used 
in training both components. 

3.1 Generator 
3.1.1 Input and output. The function of the generator (Figure 3) 
is to generate word-gestures for a given word with randomness in 
the output. It takes the following two inputs for training. 

• The target word � . The Generator frst converts a target 
word� into the corresponding word prototype shape, which 
is a set of straight lines connecting the centers of correspond-
ing keys on a virtual keyboard (e.g., green strokes in Figure 
2). Each word corresponds to only one word prototype which 
serves as the representation of the target word in the train-
ing process. We represented a word with its prototype shape 
instead of its text format because the former provided basic 
information about the location and shape of the correspond-
ing word gestures, which could simply the learning process. 

To construct word prototypes from a target word � , we use 
the letter centroids for the word � on a keyboard as the 
initial set of touch points. Between every two key centers 
we distribute � − � points so that each key center pair has 
�−� "between" points, where � is sequence length and � is
�

the number of key centers. Positions of "between" points are 
determined by uniformly distributing between respective 
key centers. This process is depicted as the purple box in 
Figures 2 and 3. We use � = 128 points in constructing the 
word prototype. 

• User-drawn gestures for the target word � . The variational 
encoder component (Figure 2) takes user-drawn gestures for 
the target word � as input (for training), encodes it into 
a Gaussian latent code, and passes it to the generator. In 
WordGesture-GAN, we represent user-drawn gestures as a 
sequence of (�� , �� , �� ) where �� and �� represent the � − � 
coordinates of touch points and �� represents how much 
time passed since the previous point. We set the number 
of touch points as � = 128, using a fxed length vector to 
represent each gesture. If a user-drawn gesture has more 
than � touch points, we uniformly sample � points from the 
gesture, ensuring the start and end points of the gesture are 
included. If a user-drawn gesture has less than � touch points, 
we linearly interpolate between the existing touch points 
to generate a new sequence of length �. Figure 2 shows an 
example of a user-drawn gesture for the word found. 
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Figure 2: A depiction of the WordGesture-GAN architecture. The word prototype (straight lines connecting letter centroids 
on a keyboard) and a random Gaussian latent code are inputs to the generator. The output of the generator is then fed to the 
discriminator and the discriminator outputs how realistic the gesture is. The variational encoder generates the Gaussian latent 
code for training the generator only. User-drawn gestures (orange) are not involved when we use the generator to simulate 
gestures. 

Figure 3: A depiction of the Generator architecture (green box in Figure 2) along with the Variational Encoder architecture (blue 
box in Figure 2). The word prototype (green) acts as the conditional input for the generator. During training, the variational 
encoder encodes user-drawn gestures (orange) into the Gaussian latent space. The resulting latent code is repeated along the 
length of the prototype shape and is concatenated before being fed into the Generator. To ensure the Generator uses the latent 
code in a meaningful way, we recover the latent code from the simulated gesture using the variational encoder and compare it 
against the original latent code 
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We normalized the coordinates of both user-draw gestures and 
word prototypes. More specifcally, the � and � coordinates of both 
user-drawn gestures and word prototypes are normalized to be 
within [-1,1] where -1 is the left/top of the keyboard and 1 is the 
right/bottom of the keyboard. The unit of timestamps are in seconds 
to ensure the scale of timestamp values is similar to the scale of 
coordinates. The output of the generator is a simulated gesture for 
a word, which is then passed to the discriminator. 

3.1.2 Structure. The generator is a multi-layer Bidirectional LSTM 
that takes both the prototype shape and the latent code as input. 
The LSTM is designed to model data in a sequential manner, which 
makes it appropriate for generating word-gestures. To provide the 
latent code to the generator it is frst repeated along the sequence 
length and then concatenated with the prototype shape (as shown 
in Figure 3). This method of concatenation follows the method 
proposed in Bicycle GAN to input a latent code alongside a semantic 
map[50]. 

We use a Variational Encoder to encode a user-drawn gesture 
into a Gaussian latent code (Figure 3). The encoder is a multi-layer 
perceptron with two fnal layers to get the mean and variance 
representing aspects of the gesture. With these two parameters 
encoded from the gesture, we can then use the reparamaterization 
trick as described in the original Variational Auto-Encoder (VAE) 
paper [20] to sample from a Gaussian distribution in a way that is 
diferentiable for training. By training the network in this way, we 
ensure that the Gaussian noise will have some meaningful structure 
for generation. 

3.2 Discriminator 
3.2.1 Input and output. The discriminator takes either simulated 
gestures from the generator or user-draw gestures as input and 
outputs to what degree the input gesture is a user-drawn gesture. 
Despite the generator being conditional, we avoid using a condi-
tional discriminator as in practice we found that the model performs 
better when trained with an unconditional discriminator. This is 
consistent with the fndings of previous works[36, 50]. 

The output of the discriminator � (�) for a gesture � describes 
how much the discriminator believes the gesture � is user-drawn. 
a smaller number (e.g. � (�) < 0) means the gesture is simulated, 
while a larger number (e.g. � (�) > 0) means it is user-drawn. 

The output of the discriminator on the user-drawn and simu-
lated gestures, along with an additional reconstruction loss for the 
generator, are then used in back propagation to adjust the weights 
of the full WordGesture-GAN, including both the generator and 
discriminator following their respective loss functions. 

3.2.2 Structure. The discriminator adopts a multi-layer perception 
structure to output a single value representing how realistic the 
output is. The discriminator takes only the user-drawn or simulated 
gesture as input. A depiction of the discriminator for this model is 
given in Figure 4. 

3.3 Loss functions 
3.3.1 Loss function for discriminator. We use the Wasserstein GAN 
loss [3] as the loss function for the discriminator. The objective of 
the discriminator is to minimize the loss function over all words in 

the training dataset. The loss function for a word � under a partic-
ular generator (�) and a discriminator (�) is denoted by ����� (�), 
and is defned as: 

����� (�) = E�∼� (� ) [� (� (�,�))] − E� ∼� (� ) [� (�)] (1) 

The term � is a sample from the latent space representing the 
variation of user-drawn gestures (Figure 3), which has a Gauss-
ian distribution denoted by � (�). � (�,�) is a gesture simulated 
by Generator � for the word � with the sampled variation �. The 
term � (� (�,�)) is the output (a real number) from discriminator 
� which describes how close the simulated gesture � (�,�) is to 
a user-drawn gesture. E�∼� (� ) [� (� (�,�))] is the expectation of 
� (� (�,�)) over a distribution of � (�). The term � represents a user-
drawn gesture, which has a distribution of � (�). � (�) represents 
the output of the discriminator which describes how close � is to a 
user-drawn gesture. 

Minimizing the loss function over all words maximizes the output 
of discriminator for user-drawn gestures, while minimizing the 
output of the discriminator for simulated gestures. The loss function 
output acts as an estimate of the Wasserstein distance between the 
user-drawn and simulated gestures, providing a strong gradient for 
training. 

3.3.2 Loss function for generator. The loss function of the generator 
for a word � is denoted by ���� (�), and is defned as follows. 

���� (�) = −����� (�) + �� ��� �� ��� (�) + ���� ���� (�) 
(2)+���� ���� (�) + ���� ���� 

It is a weighted average over 5 components. The weights �� ��� , 
���� , ���� , and ���� are hyper-parameters. We present their actual 
values in Section 4.2. The defnition of each of the fve components 
is explained as follows. 

• The term ����� (�) is the loss function of the discriminator 
(Equation 1). 

• The term �� ��� (�) is the feature matching loss for a given 
word �, which measures the diference between the statistics 

Figure 4: A depiction of the Discriminator architecture 
(brown box in Figure 2). The input is either a user-drawn 
gesture or a simulated gesture. The output is a single value 
representing how realistic the gesture is, where a larger value 
(e.g. D(x)>0) means it is user-drawn. 
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of user-drawn (�) and generated gestures (� (�,�)) for all 
hidden layers of the discriminator. The method used is the 
same as in the Pix2PixHD paper [45] and is defned as ∑ 

�� ��� (�) = E�∼� (� ),� ∼� (� ) 

� 1 ( | |� (� ) (� (�,�)) − � (� ) (�) | |1)
�� �=1 

(3) 
Where � is the total number of hidden layers in the discrim-
inator, � (� ) is the i-th layer of the discriminator, �� is the 
number of elements in layer � . 

• The term ���� (�) represents the reconstruction loss for a 
word �, which is the �1 loss between user-drawn gestures � , 
and simulated gestures from Generator � (�,�). It is defned 
as 

���� (�) = E�∼� (� ),�∼� (�,�) |� − � | (4) 
The �1 distance � − � is calculated between the �th point of 
the gestures as:∑ 
|� − � | = |��� − ��� | + |��� − ��� | + |��� − ��� | (5) 

� ∈� 

where �� and �� is the �th point of the user-drawn gesture � 
and a simulated gesture �, (�,�) are coordinates and � is the 
timestamp. 

• To enforce greater diversity in outputs and prevent mode 
collapse, we include a latent encoding loss ���� like the one 
found in Bicycle GAN [50]. We take a randomly sampled 
encoding � from the Gaussian distribution � (�) and attempt 
to recover it using �̃ = � (� (�,�)). we compare the original 
latent code � and the recovered latent code �̃ using the �1 
distance. This loss is defned as 

���� (�) = E�∼� (� ) [| |� (� (�,�)) − � | |1] (6) 

While the reconstruction loss from Equation 5 enforces that 
simulated gestures �̃ generated from latent codes are con-
sistent with user-drawn gestures � , the latent encoding loss 
ensures that encodings resulting from simulated gestures �̃ 
are consistent with the initial encoding �. 

• We also include ���� as a part of the loss function, which 
is the Kullback-Liebler Divergence (KLD) [24] between the 
variational encoder outputs and a normal distribution. This 
term as mentioned briefy in section 3 ensures that the dis-
tribution of the variational encoder output does not diverge 
too far from the Normal distribution and therefore become 
difcult to sample from. 

The objective of the generator is to minimize the loss function 
(Equation 2) over all words in the training data set. Minimizing the 
loss function would maximize the term E�∼� (� ) [� (� (�,�))] which 
indicates how likely a simulated gesture will be recognized as a user-
drawn gesture by the discriminator. Conversely, by minimizing the 
loss function the �� ��� , ���� , ���� , and ���� losses end up being 
minimized. 

4 TRAINING WordGesture-GAN 

4.1 Dataset 
We used the publicly available mobile word-gesture dataset [26] 
with 38k gestures for training and testing. The dataset was collected 

via a web-based custom virtual keyboard, involving 1,338 users 
who submitted word-gestures for 11,318 unique English words. The 
original dataset consisted of around 124k gestures. We removed 
gestures marked as invalid and gestures for single letter words. 
The original dataset was heavily imbalanced, with certain words 
like "the" getting signifcantly more representation in the dataset 
than other words. To avoid bias for certain words introduced by 
imbalanced training data, for any word with more samples than 
some upper bound �, we sampled � gestures for that word randomly 
from the dataset and discarded the rest. After setting the upper 
bound as � = 5, we ended up with a dataset of around 38k gestures, 
spread across approximately 11k words. 

We split the dataset into a training and testing set each with a 
unique set of words. To ensure no words overlap, we frst randomly 
split the words into training and testing words following the split 
ratio. We used a ratio of 80% training 20% testing to split our data, 
resulting in 9045 unique training words and 2262 unique testing 
words. We then sort the gestures into the relevant set based on 
the word each gesture represents. The fnal training set size is 30k 
unique word-gestures (only for training) while the fnal testing set 
size is 7.6k unique word-gestures (exclusively held out for testing). 

4.2 Training Process 
We followed the procedure for training Wasserstein GAN [3] to 
train WordGesture-GAN. We updated the discriminator 5 times 
for every 1 update to the generator. This ensured that the discrim-
inator trained to optimality and provided a strong gradient for 
the generator to follow. For the Gaussian latent code, we used a 
32-dimensional vector as input to the network. For the weights of 
the components of the generator loss, we use �� ��� = 1, ���� = 5, 
���� = 0.5, and ���� = 0.05. We used a batch size of 512 and a 
learning rate of 0.0002 on the ADAM optimizer. Leaky ReLU was 
used between all layers of both the discriminator and the encoder, 
while the Tanh activation found within the LSTM layer itself was 
used as activation for all layers of the generator. Spectral normal-
ization [34] is used on all layers of the discriminator, due to the 
K-Lipschitz constraint for the WGAN loss. 

We also trained the network in two cycles similar to how it 
is done in Bicycle GAN [50]. In one cycle, the model is given a 

′randomly sampled latent code � to generate a new gesture � and 
must recover the latent code (denoted as � ′) from the simulated 

′ ′gesture � using the variational encoder (� → � → � ′). The 
latent codes � and � ′ are then compared using the latent code loss 
defned in Equation 6. In the second cycle a user-drawn gesture 
� was encoded by the variational encoder to a latent code � ′ and 

′was used as input to the generator to generate a new gesture � 
(� → � → � ′). The user-drawn gesture � and the simulated 

′ gesture � are then compared using an �1 reconstruction loss as 
described in Equation 4. For each cycle a separate discriminator 
is trained, both having the same structure. As with the original 
Bicycle GAN paper [50] we found that this improved the outputs of 

′the model. For the � → � → � ′ cycle we also freeze the encoder 
when updating the latent code reconstruction loss to prevent the 
encoder from hiding information from the generator. 
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5 EVALUATION 
We used an ensemble of methods and measures to evaluate WG-
GAN generated word-gestures. Each method looked at a diferent 
aspect of these gestures in comparison to those generated by the 
prior state-of-the-art word-gesture models. 

5.1 Re-implementing Minimum Jerk Model and 
Style-Transfer GAN 

As a baseline for comparison, we frst implemented the minimum 
jerk model following Quinn and Zhai’s work [37]. We trained the 
model as explained in [37] to fnd the aggregate distribution of the 
ofsets from the key centers, and to fnd the mean and standard 
deviation of the angles between the next key center and the mid-
point on the gesture curve about the previous character point. After 
training on the same training dataset, we used the model to generate 
the same number of simulated gestures as the testing dataset. 

We also implemented the Style-Transfer GAN with explicit style 
transfer [31, 32] as another baseline for comparison. We constructed 
a sequence to sequence (Seq2Seq) model [42] as the generator for 
the network. We replaced the original Minimax GAN loss with 
the Wasserstein GAN loss for ease of training, given that this is 
a smaller dataset than the original paper [31]. Since the original 
paper did not specify how the style encodings were added in to the 
Generator network, we chose to concatenate them together in the 
encoding layer of the Seq2Seq model, as concatenation is a common 
way to combined two inputs into one. The original Style-Transfer 
GAN simulate only spatial movement for gestures (i.e., a sequence 
of (�� , �� )). We extended it to generate both spatial and temporal 
movements (i.e., a sequence of (�� , �� , �� )), to make it comparable to 
the gestures generated by WordGesture-GAN. We achieved this by 
representing a gesture with a vector of (�� , �� , �� ), instead of (�� , �� ), 
in training. After training on the same training dataset, we sampled 
gestures to get the same number of simulated gestures as the testing 
dataset. 

5.2 Simulating gestures with the generator in 
WordGesture-GAN 

After training WordGesture-GAN, we used the generator to simu-
late gestures, and evaluated them on the held-out testing dataset. 
To simulate gestures for an arbitrary word � , we represented � as 
a word prototype and fed it into the generator. The generator then 
sampled a Gaussian latent code (Figure 3) to control the variation 
of the simulated gestures. With these two inputs (prototype shape, 
Gaussian latent code), the generator was able to simulate gestures 
for � . We simulated gestures for every word within the testing 
dataset. The number of simulated gestures for a word � was iden-
tical with the number of user-drawn gestures for � in the testing 
dataset. Therefore, the simulated gesture dataset was exactly the 
same size as the testing dataset. Recall that the words in the testing 
dataset do not overlap with words used in training. 

When generating gestures, the only input to the generators for 
all the three models (the Minimum Jerk, Style-Transfer GAN, and 
WordGesture-GAN) was the input text. None of them took user-
drawn gestures as references. Such a setup tested the capability 
of a generator for generating realistic gestures for arbitrary text. 

Taking the input text as the only input also made the comparison 
fair across models. 

5.3 Visual Inspection 

Figure 5: Top: Examples of simulated gestures by 
WordGesture-GAN for three diferent words. The dots 
shown are evenly spaced in time, so areas where the dots 
become denser are areas where the gesture speed slows 
down. Bottom: Three simulated gestures from WordGesture-
GAN for the word "count". All these words were unseen in 
the training dataset. 

Figure 6: Examples of user-drawn and simulated gestures 
from all three models for the word "voice". The dots shown 
are evenly spaced in time, so areas where the dots become 
denser are areas where the gesture speed slows down. All 
three models took the text “voice” as the only input. 

We frst visually inspected the simulated gestures from the three 
models, to qualitatively evaluate whether they resembled user-
drawn gestures. Figures 5, 6, 7, and 8 show examples of simulated 
gestures by diferent models in comparison with user-drawn ges-
tures. As shown in Figure 5, the simulated gestures by WordGesture-
GAN (blue curves) to a large degree matched our expectation of 
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Figure 7: Five simulated gestures (blue) by WordGesture-
GAN overlaying fve user-drawn gestures (orange) for the 
same word. 

Figure 8: Comparisons of WordGesture-GAN simulated ges-
tures dynamics (blue) to user-drawn gesture dynamics (or-
ange) and Minimum Jerk model simulated gestures (red) for 
the same word. 

how users would draw gestures. The generated gestures by the Min-
imum Jerk model [37] (red curves in Figure 5) showed smoothness 
along the movements. It is expected as the gestures generated by 
this model should minimize the changes in acceleration along the 
path. The shapes of gestures generated by the Style-Transfer GAN 
(purple curves in Figure 5) deviate from the user-drawn gestures. 
It was probably because the style-transfer GAN was originally de-
signed to work with user reference input [31, 32], but in our test 
user-drawn gestures (reference gestures) were absent in gesture 
generation. One possible reason for the sub-optimal performance of 
Style-Transfer GAN is that style-encoder in this model did not have 
a well-defned shape to describe the latent space where the style 
of drawing was embedded. It made the style sampling uncertain 
thus resulting in unrealistic movements when the user reference 
gestures were absent. 

5.4 Wasserstein Distance between Simulated 
and User-drawn Gestures 

To understand to what degree the simulated gestures mimic the 
user-drawn gestures, we examined the Wasserstein distance between 
the simulated gestures and the user-drawn gestures using both �2 
and dynamic time warping (DTW) distance as distance metrics. 
We calculated the Wasserstein distance for each distance metric 
within the words as follows. For a word � , we frst calculated 
the �2 (or DTW) distance between each simulated gesture and 
user-drawn gestures for the given word � . For measuring the �2 
distance between gestures we maintain the temporal order of the 
gesture, where the �-th point of the generated gesture is measured 
against the �-th point of the user-drawn gesture. We then formulate 
the problem of calculating the Wasserstein distance as a minimum 
weight matching on a bipartite graph between simulated gestures 
and user-drawn gestures, where the weights of the edges were the 
�2 (or DTW) distances calculated beforehand (distances between 
gestures for diferent words are set to infnity). After performing 
the minimum weight matching, the mean of the weights of all 
remaining edges is the average minimum �2 (DTW) distance, which 
represents the smallest average cost needed to convert a simulated 
gesture to a user-drawn gesture for a word. This is equivalent to 
calculating the Wasserstein Distance, using �2 (DTW) distance as 
the metric. 

Tables 1 and 2 show the Wasserstein distance for the �2 and 
DTW distance metrics between simulated and user-drawn gestures 
for the WordGesture-GAN, Style Transfer GAN, and minimum 
jerk models. Note that as the minimum jerk model does not sim-
ulate non-relative timestamps for touch points, we only have the 
Wasserstein distance for (�� , �� ) sequences for this model. As shown, 
WordGesture-GAN yields a smaller Wasserstein distance than the 
minimum jerk model and Style-Transfer GAN, indicating that the 
gestures simulated by WordGesture-GAN are more similar to the 
user-drawn gestures compared with the other two models. Figure 
8 shows examples of simulated gestures of WordGesture-GAN and 
the Minimum Jerk model compared with the user-drawn gestures. 
As shown, WordGesture-GAN could simulate gestures similar to 
the user drawn-gestures. 

5.5 Frechet Inception Distance Score between 
Simulated and User-drawn Gestures 

We also measured the realism and diversity of generated gestures 
using the Frechet inception distance score (FID) [16]. In image gen-
eration tasks, the FID score is a common metric for evaluating both 
the realism and diversity of images and has been shown to correlate 
well with human perception of realism [16]. To apply this metric 
to our work, we trained an auto-encoder on the training dataset 
we used for the other 3 models. The objective of the auto-encoder 
was to encode a user-drawn gesture to a reduced dimension latent 
code and use the resulting latent code to reconstruct the original 
gesture. The auto encoder is a diferent structure from the GAN 
model, consisting of a multi-layer perceptron encoder and a multi-
layer perceptron decoder, and being tasked with reconstructing the 
original gesture that was given. After extracting latent codes for 
both user-drawn gestures and simulated gesture using the encoder, 
we measured the Frechet Distance [16] between the user-drawn 
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Method L2 Wasserstein Distance for (�� , �� )sequences L2 Wasserstein Distance for (�� , �� , �� )sequences 
Minimum Jerk Model 5.004 (2.099) -
Style Transfer GAN 10.4805 (2.011) 10.4891 (2.011) 
WordGesture-GAN 4.409 (2.193) 4.426 (2.198) 

Table 1: Mean (std. dev) of �2 Word Wasserstein Distance between simulated gestures and user-drawn gestures on the testing 
dataset. The minimum jerk model is evaluated for (�� , �� ) sequences only as it does not predict the timestamps of touchpoints 
on a non-relative timescale. As shown, WordGesture-GAN has better generation accuracy than the Minimum Jerk model and 
Style Transfer GAN (lower is better). 

Method DTW Wasserstein Distance for (�� , �� ) sequences DTW Wasserstein Distance for (�� , �� , �� ) sequences 
Minimum Jerk Model 2.752 (1.488) -
Style Transfer GAN 8.11 (1.943) 8.132 (1.941) 
WordGesture-GAN 2.146 (1.592) 2.183 (1.598) 

Table 2: Mean (std. dev) of Dynamic time warping (DTW) Word Wasserstein Distance between simulated gestures and user-drawn 
gestures on the testing dataset. The minimum jerk model is evaluated for (�� , �� ) sequences only as it does not predict the 
timestamps of touchpoints on a non-relative timescale. 

and generated gesture latent code distributions using the mean 
and variance from each. For simulated gestures that are similar to 
user-drawn gestures, their encodings in the latent space should 
be similar to the encodings of user-drawn gestures, resulting in 
a small Frechet distance in the latent space. The fnal �1 recon-
struction loss in training was 0.041 and the fnal �1 reconstruction 
loss on the testing set was 0.046. The FID Scores are presented 
in Table 3. As shown, the distribution of gestures generated by 
WordGesture-GAN have the lowest Frechet Distance, indicating 
that they resembled the user-drawn gestures more closely than 
gestures generated by the other two models. 

Method Frechet Inception Distance Score 
Minimum Jerk Model 0.354 
Style Transfer GAN 2.733 
WordGesture-GAN 0.270 

Table 3: Frechet Inception Distance between generated and 
user-drawn gestures by three models. Lower score is better. 

5.6 Precision and Recall of Generated Gestures 
over the User-Drawn Gestures 

To further assess the realism and diversity of generated gestures, 
we use precision and recall [25] to assess whether generated ges-
tures truthfully represent the user-drawn gestures (precision), and 
whether the generated gestures cover variance in the user-drawn 
gestures (recall). Specifcally, we followed a previously proposed 
method to estimate the manifold for the user drawn and generated 
gestures using � nearest neighbors[25]. For estimating the preci-
sion and recall for the user-drawn distribution � and the generated 
distribution � , we describe the precision as the percentage of gen-
erated gestures in � that fall within the the user-drawn gesture 
manifold, while recall represents the percentage of user-drawn 
gestures that fall within the generated gesture manifold. 

More specifcally, we calculated the precision and recall as fol-
lows. We frst estimated the respective gesture manifolds by taking 
each gesture from the respective distribution (�� or � � ) and drawing 
a bounding circle �(�, � ) around each gesture, where � is the center 
point, represented as a gesture, and � is the radius of the bounding 
circle. For estimating the manifold, � is equal to the distance to the 
k-th nearest neighbor of center point � represented as � � �� (�). 
We set � = 3 as suggested in the original paper[25]. The distance 
between gesture pairs is calculated using the �2 distance the same 
way as the �2 distances were calculated for the �2 Wasserstein 
distance. 

With the manifolds defned, we estimate the precision and recall 
as follows: ∑|� |1 

��������� = 1∃� s.t. � � ∈� (�� ,� � �� (�� ) ) (7)|� | 
� =0 ∑|� |1 

������ = |� | 1∃� s.t. �� ∈� (� � ,� � �� (� � ) ) (8) 
�=0 

The precision and recall for all three models on the testing dataset 
are presented in Table 4. The results show that WordGesture-GAN 
has the highest precision value, indicating that WordGesture-GAN 
outperformed other two models in generating realistic gestures. 
On the other hand, The recall score of WordGesture-GAN is lower 
than other models, indicating that it could be further improved 
by increasing the variance of generated gestures. We discuss a 
potential research direction to mitigate this issue in the Limitations 
and Future Work section. 

Method Precision Recall 
Minimum Jerk Model 0.785 0.575 
Style Transfer GAN 0.229 0.569 
WordGesture-GAN 0.973 0.258 

Table 4: Precision and recall of generated gestures over the 
user-drawn gestures for all three models. Higher is better. 
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5.7 Correlations for Velocity and Acceleration 
between Generated and User-drawn 
Gestures 

In addition to visual analysis, we also analyze the correlation for 
the Velocity and Acceleration between generated and user-drawn 
gestures, following the method used to evaluate the Minimum Jerk 
Model [37]. We measured the Pearson Correlation between the user-
drawn and generated gestures to quantify the correlation between 
the profles. Our analysis presented in Table 5 shows that although 
the correlation for WordGesture-GAN is not the highest for either 
velocity or acceleration, it is close to the highest value for both 
measures. More specifcally, WordGesture-GAN is slightly behind 
the Minimum Jerk Model, but better than the Style-Transfer Model 
in velocity correlation; it is slightly behind Style-Transfer GAN 
model, but better than the Minimum Jerk model in acceleration 
correlation. 

Figure 9: Comparisons of fve simulated gestures dynamics 
by WordGesture-GAN (blue) to fve user-drawn gesture dy-
namics (orange) for the same word. Simulated gestures were 
able to refect the trends of movement dynamics in user-
drawn gestures. 

5.8 Distributions of Velocity and Acceleration 
for Generated and User-Drawn Gestures 

We also compare the distributions of velocity and acceleration for 
generated and user drawn gestures against each other using box 
plots. We calculate the velocities and accelerations across all ges-
tures by using frst and second derivative Savitzky-Golay flters [40] 
and applying them to the gestures. Figure 10 shows the distributions 
of velocity and acceleration for the user-drawn gestures and gen-
erated gestures from all 3 models. The distributions are visualized 
using a box plot. The distributions of velocities and accelerations 
for WordGesture-GAN more closely represent the distributions of 
velocities and accelerations for the user-drawn gestures than the 
other two models. 

Figure 10: Box plots showing the velocity and acceleration 
distributions normalized by the keyboard dimensions for the 
user-drawn gestures and generated gestures for all 3 models. 
The distributions for WordGesture-GAN are closer than both 
the Minimum Jerk and Style-GAN models to the user-drawn 
distributions. 

5.9 Comparing Jerk in User-drawn and 
Generated Gestures 

We compared the average jerk of user-drawn and generated ges-
tures for each model as well. If the generated gestures resemble the 
user-drawn gestures, they should have the similar amount of jerk. 
We calculated the jerk by applying a third derivative Savtizky-Golay 
flter [40] to the gestures, using a third degree polynomial and a 
window size of 5 Table 6 shows the mean (std. dev) of jerk over 
all generated and user-drawn gestures. As shown, the amount of 
jerk in gestures generated by WordGesture-GAN is closest to the 
amount of the jerk in the user-drawn gestures, indicating that the 
gestures generated by WordGesture-GAN resemble the user-drawn 
gestures more closely than other two models. It is also as expected 
that the gestures generated by the minimum jerk model have the 
lowest jerk as this model aims to the minimize the jerk of gesture 
movements. 

5.10 Duration of Gesture Production 
As WordGesture-GAN can simulate the timestamps of each touch 
point, it can predict the duration of drawing a gesture: the times-
tamp of the last touch point also indicates the duration of the draw-
ing a gesture. To understand whether this duration prediction is 
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Method Velocity Correlation Acceleration Correlation 
Minimum Jerk Model 0.40 (0.24) 0.21 (0.14) 
Style Transfer GAN 0.31 (0.18) 0.26 (0.21) 
WordGesture-GAN 0.40 (0.21) 0.26 (0.17) 

Table 5: Mean (std. dev) of Velocity and acceleration correlations between simulated and user drawn gestures for each model. 

Method Jerk 
User-Drawn 0.0066 (0.0103) 
Minimum Jerk Model 0.0034 (0.0098) 
Style Transfer GAN 0.0051 (0.0107) 
WordGesture-GAN 0.0058 (0.0083) 

Table 6: mean (std. dev) jerk for gestures from the presented 
models and user-drawn gestures. 

accurate, we compared WordGesture-GAN against the CLC model 
[6] for predicting the duration of drawing gestures. The CLC model 
approximates the gesture production duration by summing up the 
cost for drawing line segments of a word prototype. More specif-
cally the time duration for drawing line segments is determined by 
a function with parameters � and � 

� (��) = � ∗ ( | |�� | |2)� (9) 

where �� is a line segment, | |�� | |2 is the length of the line segment, 
and � and � are empirically determined constants. The equation 
to get the duration of a gesture for a word is then the sum of the 
duration of the line segments. the fnal equation for the duration of 
a word is then ∑ 

� (�) = � (��) (10) 
�� ∈� 

We optimized the � and � values on the training set by fnding 
the combination of � and � that minimizes the Root Mean Square 
Error (RMSE) of the total duration. The values were � = 431.9 and 
� = 0.125. 

The evaluation on the testing dataset showed that the RMSE for 
the CLC model was 1150.7 ms while WordGesture-GAN achieved an 
RMSE of 1180.3 ms. For reference, the average duration of gestures 
in the testing dataset was 1946.8 ms. Both WordGesture-GAN and 
the CLC model have similar performance in predicting the mean of 
duration. Our further analysis showed that WordGesture-GAN is 
better at estimating the duration of longer gestures, while the CLC 
model is better for short-length words, as is shown in Figure 11. 
Diferent from the CLC model, since WordGesture-GAN generates 
a distribution, it can estimate the variance of durations for gesture 
movement time. It estimated that the mean of Std. Dev. of gesture 
duration per word is 140 ms. For reference, the mean Std. Dev. of 
duration of user-drawn gestures per word was 609 ms. 

6 DISCUSSION AND FUTURE WORK 

6.1 Performance of WordGesture-GAN 
Our experiment results on the testing data set showed that the 
gestures generated by WordGesture-GAN more closely resemble 
the user drawn gestures than the Minimum Jerk model [37] and 

Figure 11: Mean (Std. Dev) gesture duration for words 
with diferent lengths for User-Drawn, and prediction by 
WordGesture-GAN and the CLC model. The mean and stan-
dard deviation duration for each word are calculated and 
then averaged within the respective word length bucket for 
user-drawn and prediction by WordGesture-GAN . The CLC 
model does not have error bars since it only estimates a single 
mean value for each word and cannot predict the standard 
deviation of gesture duration 

Style-Transfer GAN [31, 32]. The �2 and DTW Wasserstein dis-
tances between the simulated and user-drawn gestures show that 
WordGesture-GAN captures the shape of user-drawn gestures the 
best, compared with the Minimum Jerk and Style-Transfer GAN. 
Our analysis of the total amount of jerk, and FID score also shows 
the gestures generated by WordGesture-GAN resemble the user-
drawn gestures more closely than other two models. We also pre-
sented visual examples of user-drawn gestures and simulated ges-
tures from all 3 models to show that WordGesture-GAN has the 
closest resemblance visually to user-drawn gestures. 

6.2 Applications of WordGesture-GAN 
Generative gesture models like WordGesture-GAN can be used to 
improve the development and evaluation of word-gesture based 
input systems, and for keyboard layout optimization and evaluation. 

First, as simulated gestures can accurately refect spatial and 
temporal features of gesture movements, WordGesture-GAN can 
be used for training and testing a word-gesture decoder. The devel-
opment of word-gesture based input systems often require a large 
number of gestures for training and testing, which is laborious to 
collect. WordGesture-GAN can be deployed to simulate a large 
number of gestures for words with only small training samples, 
and for words that were not included in data collection. Its ability 
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Training Setup Word error rate on testing data set 
200 User-drawn gestures 32.8% 
200 User-drawn + 10000 simulated gestures 28.6% 
10000 Simulated gestures 28.6% 
10000 User-drawn gestures 27.8% 

Table 7: Word error rate of the SHARK2 decoder for diferent training setups 

to simulate both spatial and temporal sequences (i.e., (�� , �� , �� ) is 
valuable especially if a decoder under evaluation takes into account 
both spatial and temporal information (e.g., speed or acceleration) 
for decoding. 

As an example, we investigated using gestures simulated by 
WordGesture-GAN to train a SHARK2 decoder [22]. The SHARK2 

decoder is a multi-channel recognition system that integrates dis-
tance scores from a location channel, a shape channel, and prob-
ability scores from a language component. The SHARK2 decoder 
algorithm assumes that the distance from a gesture to the standard 
template of the intended word (in either the shape or the location 
channel) follows a Gaussian distribution N(0, �). First introduced 
in 2004 [22], SHARK2 outlines the principle of decoding gesture 
input that has been widely adopted by various gesture input sys-
tems (e.g., [10, 11, 23, 52]). It was also the algorithm adopted by 
the authors of the mobile word-gesture dataset [26] to analyze the 
gesture input accuracy. We decided on the SHARK2 decoder due 
to it being a well-known and accessible open-source algorithm. 
Our results shown here using the decoder can therefore be used 
for comparison against other works. For the shape channel, this 
distribution is N(0, ��ℎ��� ), and for the location channel, this dis-
tribution is N(0, ���� ). Therefore, there are three main empirically 
determined parameters in the SHARK2 decoder: ���� , ��ℎ��� , and 
��� which is the weight for the language model as described in 
previous research [22]. We implemented a SHARK2 decoder fol-
lowing the description in the original paper [22], and trained the 
above three parameters using the setups described in Table 7 and 
tested the decoding results on 30000 unseen user-drawn gestures. 
We obtained user-drawn gestures from the mobile word-gesture 
dataset [26] for training and testing the SHARK2 decoder. More 
specifcally, we reserved 30000 gestures for testing and randomly 
sampled 200 user-drawn gestures from the rest for training. We 
used the same 30k unigram language model trained from the COCA 
Corpus [12] across all conditions. 

Our evaluation (Table 7) shows that augmenting user-drawn 
gestures with gestures simulated by WordGesture-GAN can beneft 
training word-gesture decoders. Furthermore, simulated gestures 
alone can achieve similar performance in training a word-gesture 
decoder compared to training with real-world gestures (decoding 
word error rate 28.6% versus 27.8%). 

Second, since WordGesture-GAN can also predict the gesture 
production time for a word, it can serve as a performance model 
in interface design, optimization, and evaluation. For example, per-
formance models such CLC model [6] and Rick’s model [39] have 
been used to design, optimize, and evaluate keyboard layouts for 
word-gesture input. The WordGesture-GAN could play the same 
role as these models. A potential weakness of WordGesture-GAN is 
that neural network based model typically takes longer time than 

an analytic model (e.g., CLC model [6]) for making prediction. More 
research is needed to understand whether it would be appropriate 
for keyboard layout optimization research. 

Third, as a data-driven model, WordGesture-GAN can be trained 
to learn any type of word-gesture data. A key beneft of neural 
network based generative model is the ability to fne-tune them 
for specifc tasks. As we have shown, our model is able to simulate 
a variety of word-gestures from a small training dataset, which is 
ideal for simulating difcult to sample data. For example, the model 
could be shown a dataset containing gestures where the user made 
a mistake and could learn to recreate those types of gestures for 
diferent words. 

6.3 Limitations and Future Work 
One area in which the current model can be improved further is 
the diversity of the generated gestures. While the model is capable 
of generate diferent gestures for a given word, the variance of 
these is somewhat limited compared to other gesture production 
models as is noted in Section 5.6. A potential method for improving 
the variance could be to use gestures generated by the Minimum 
jerk model as input instead of the straight-line prototype. Since 
the Minimum Jerk gestures already have some variance for a given 
word, this could improve the variance of gestures from the model 
while still maintaining higher fdelity. 

7 CONCLUSION 
We have designed and implemented WordGesture-GAN, a con-
ditional generative adversarial network that takes arbitrary text 
as input, and generates realistic word-gesture movements in both 
spatial and temporal dimensions (i.e., a vector of (�� , �� , �� )). The in-
novations of WordGesture-GAN include introducing a Variational 
Auto-Encoder to extract the variation of user-drawn gestures, us-
ing the Wasserstein distance and �1 distance to ensure simulated 
gestures resembled user-drawn gestures, and adopting a two-cycle 
process to train the model. Our experiment on a 38k dataset shows 
that WordGesture-GAN outperforms the existing gesture produc-
tion models [31, 32, 37] in generating realistic gestures, measured 
by the �2 and dynamic time warping Wasserstein distances, the 
Frecher Inception Distance (FID) scores, and the amount of jerk 
in gestures. WordGesture-GAN can also predict the duration of 
drawing word-gestures, serving as a performance model. Our eval-
uation shows it overall performs similarly to the existing CLC 
model [6] in predicting the duration of word-gesture movements. 
As WordGesture-GAN can generate realistic word-gestures and 
predict input performance, it serves as a valuable tool to develop 
and evaluate gestural input systems. 
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